良基、归纳法、动态规划

目录

一,数学归纳法

1,皮亚诺公理

2,第一数学归纳法

3,跳跃归纳法

4,第二数学归纳法(完整归纳法)

5,螺旋式归纳法

6,加强归纳法

二,数学归纳法的适用领域

1,二维命题退化成一维命题

2,二维命题

3,数学归纳法不能用于实数域

4, 数学归纳法的适用领域

三,正则公理

四,良基关系

五,广义归纳法

六,动态规划

七,数学归纳法和动态规划的区别

八,加强归纳法的应用

1,不等式

(1)单侧加强

(2)单侧变双侧

(3)双侧加强

2,硬币组合问题


一,数学归纳法

虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。

数学归纳法是建立在自然数的基础之上的

1,皮亚诺公理

用日常语言来说,这5条公理可以表述成:

  • 0是自然数。
  • 每个自然数后面都紧跟着另一个自然数。
  • 如果自然数的某子集包含0,且其中的每个元素均有后继元素,那么该子集所包含的数字就是全体自然数。
  • 如果两个自然数的后继数相同,那么这两个自然数本身也相同。
  • 0不是任何一个自然数的后继数。

其中最为重要的是第三条公理,也叫做归纳公理

2,第一数学归纳法

使用第一数学归纳法证明一个命题分下面两步:

(1)证明当n= 0时命题成立

(2)假设n=k时命题成立,那么可以推导出在n=k+1时命题也成立。(k代表任意自然数,下同)

这样就可以得到,对于任意自然数n,命题成立。

3,跳跃归纳法

证明分两步:

(1) P(0),P(1),P(2),…,P(l-1)成立

(2) 假设P(k)成立,可以推出P (k+l)成立,则P(n)对一切自然数n都成立

其中l是常数,代表跳跃步长。

4,第二数学归纳法(完整归纳法)

证明分两步:

(1)P(0),P(1),P(2),…,P(l-1)成立

(2)假设当n≤k(k<l)时成立,证明当n=k+ 1时式子也成立

实际上,第一数学归纳法和跳跃归纳法都是第二数学归纳法的特例

5,螺旋式归纳法

对两个与自然数有关的命题P(n),Q(n),

(1)验证n=0时,P(n)成立

(2)假设P(k)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;

综合(1)(2),对一切自然数n,P(n),Q(n)都成立。

6,加强归纳法

这是一种比较难的思维技巧,在高中数学竞赛中比较常见。

加强命题:对于命题P和命题Q,如果对于任意n,命题“如果Q(n)则P(n)”都是真命题,则Q是P的加强命题。

对于命题P,如果P不满足第二数学归纳法的条件,但是加强命题Q满足第二数学归纳法的条件,那么可以先用第二数学归纳法证明Q恒成立,于是P也恒成立。

应用示例:见下文。

二,数学归纳法的适用领域

所有的数学归纳法,都是通过有限的递降,把问题归结为极小元处的结论。

1,二维命题退化成一维命题

假设有这样一个函数:

int f(int n, int m){
    if(n==0)return m;
    return f(n-1,m*m);
}

用数学归纳法可以证明,f(n,m)=m^(2^n)对于任意自然数n,m成立。

证明:

(1)当n=0时,对于任意m,f(n,m)=m成立

(2)若当n=k时,对于任意m,结论成立,即f(k,m)=m^(2^k)

则对任意u,f(k+1,u)=f(k,u*u)= (u*u)^(2^k) = u^(2^(k+1)),

即结论对k+1也成立。

根据第一数学归纳法,结论对任意n,m成立。

在这个问题中,我们通过n的递降,把问题归结为关于f(0,m)的结论。

2,二维命题

假设有这样一个函数:

int f(int n, int m){
    if(n==0)return 1;
    if(m==0)return 1;
    return f(n-1,m)+f(n,m-1);
}

用数学归纳法可以证明,f(n,m)=C(n+m, n),其中C表示组合数,例如C(5,2)=10

证明:

(1)当n=0时,对于任意m,f(0,m)=C(m,0) 成立

(2)若当n=k时,对于任意m,结论成立,即f(k,m)=C(k+m, k)

则对任意u, f(k+1,u)=f(k,u)+f(k+1,u-1)=f(k+1,u-1)+C(k+u, k)

用第一数学归纳法可以证明,f(k+1,u)=C(k+u+1,k+1),即结论成立

根据第一数学归纳法,结论对任意n,m成立。

这里我们两次使用第一数学归纳法,而且是嵌套的方式。

3,数学归纳法不能用于实数域

如果f(0)=0,对于任意正整数n, f(n) <= max { f(k) | 0<=k<n },即f(n)不超过[0,n)上的最大值,那么根据数学归纳法,对于任意自然数n,f(n) <=0

直接把问题域改成实数域的话:

如果f(x)=0在区间[0,1)成立,对于任意实数x>=1,f(x)不超过[0,x)上的最大值,能否得出f(x)<=0恒成立?

答案是不能,而且可以找到一个经典反例:f(x) = (1-D(x)) * G(x),

其中D表示狄利克雷函数,即当x是有理数时函数值为1,x是无理数时函数值为0

G表示高斯函数,即不超过x的最大整数。

4, 数学归纳法的适用领域

简单来讲,数学归纳法可以适用于自然数组成的n维空间,但是不能用于实数域。

三,正则公理

正则公理是集合论的ZF公理系统中的一条公理。它的表述为:“对任意非空集合x,至少有一 y∈x 使得,要么y不是集合,要么x∩y为空集。”

四,良基关系

设R为集合(或类)U上的一个二元关系,若U的每个非空子集均有R极小元,则称R为U上的一个良基关系。

良序关系一定为良基关系,反之则不成立。

由正则公理知,∈关系为集合论全域V上的良基关系,但不是良序关系。

从直观上讲,被良基化的集合或类,可以通过其上的良基关系对其元素进行分层

一个二元关系称为是良基的,当且仅当它不包含无穷降链。

五,广义归纳法

在任何一个良集集合上,都有广义归纳法:

(XR) 是良基关系,并且 P(x) 是 X 上的一个命题,如果满足

(1)对于任意极小元x, P(x)成立

(2)如果 x 不是极小元,对所有满足 y R x 的 y 都有 P(y) 为真,那么 P(x) 也一定为真

那么根据广义归纳法就可以得到,命题P在集合X上恒成立。

六,动态规划

所有的动态规划,一定是在一个良基集合上完成的广义归纳。

我在其他博文中提到的解空间,其实就是这个良基集合。

七,数学归纳法和动态规划的区别

首先,数学归纳法是建立在自然数的基础之上,复杂一点也就二维平面(第一象限),

而动态规划是广义归纳法,常见的良基集合有自然数、自然数区间、二维(或高维)空间的第一象限、树这些。

其次,数学归纳法一般是用来证明一个明确的结论,而且往往已经有解析式,

而动态规划的适用场景多且复杂,需要进行建模抽象(找出递推式)然后才能用归纳法,而且基本不存在解析式。

最后,数学归纳法没有直观的重叠子问题性质,但是动态规划必须要有显式的重叠子问题性质。

八,加强归纳法的应用

1,不等式

在证明f(n)<A时,有2种常见的加强命题可以用于加强归纳法:单侧加强、单侧变双侧

在证明A<f(n)<B时,常见的加强命题时双侧加强(也有的是一边加强一边不变)

(1)单侧加强

证明f(n)<A时,先证明f(n)<A-g(n),且g(n)>=0恒成立

(2)单侧变双侧

证明f(n)<A时,先证明h(n)<f(n)<A-g(n),且g(n)>=0恒成立

(3)双侧加强

在证明A<f(n)<B时,先证明A+h(n)<f(n)<B-g(n),且h(n)>=0恒成立,g(n)>=0恒成立

2,硬币组合问题

力扣 2952. 需要添加的硬币的最小数量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值