dp
文章平均质量分 59
蒟蒻大法好
这个作者很懒,什么都没留下…
展开
-
leetcode 639. 解码方法 II
解码方法 II 动态规划, 以 i 为结尾的数目 由 i - 1 和i - 2 推到过来,也就是当前单个字符为一种分法,当前和前一个字符为一个分法。 以单个字符为一种分发那么 dp[i]=dp[i−1]∗xdp[i] = dp[i - 1]*xdp[i]=dp[i−1]∗x其中x 为当前的情况数 ,如果当前字符为 * 那么 情况数为 9 如果当前字符为 ‘0’ 则情况数为0,其他情况则为 1 与前面一个字符一起作为一个分发则dp[i]=dp[i−2]∗ydp[i] = dp[i - 2]*ydp[i].原创 2021-09-27 21:01:41 · 172 阅读 · 1 评论 -
4720: [Noip2016]换教室
题目链接 有n节课要上,每节课有固定教室c[i],有m次交换机会,可以将每节课教室换到d[i],有v个教室,e条边。问你依次上完课的最小期望 概率dp X 表示总的距离,那么 X=∑i=2nXiX = \sum_{i = 2}^n X_{i}X=∑i=2nXi其中XiX_{i}Xi表示第i - 1节课到第i节课的距离 那么E(X)=∑i=2nE(Xi)E(X) = \sum_{i = 2}^...原创 2019-12-20 20:58:06 · 144 阅读 · 0 评论 -
概率期望
由于对于这方面实在害怕,所以做几道题来看看 A - Favorite Dice 给一个n面的筛子问你扔到所有面的期望 方程 dp[i]=1+i/n∗dp[i]+(n−i)/n∗dp[i+1]dp[i] = 1 + i/n*dp[i] + (n - i)/n*dp[i+ 1]dp[i]=1+i/n∗dp[i]+(n−i)/n∗dp[i+1] dp[i] 表示仍够n个面还差i个面的期望 那么扔到前i个...原创 2019-12-20 13:45:55 · 167 阅读 · 0 评论