All-one Matrices

单调栈与前缀和解决All-one Matrices问题
本文介绍了如何使用单调栈结合前缀和解决牛客多校第八场A题——All-one Matrices。通过维护一个up数组记录每行向上1的数量,用单调栈保存大于等于当前高度的矩形,前缀和数组则用于更新下一行1的情况。在栈中元素弹出时,判断当前位置到栈顶的1数量,若与当前段相等则矩形可向下扩展,答案不变;否则答案增加。

牛客多校第八场 A题

题目链接

单调栈+前缀和

有很多人都开了很多单调栈,其实不用,在没看别人代码之前,只看题解 我完全想不出来怎么写,看了代码才明白题解在说什么,只要一个栈就可以,我们用一个up数组代表每行第j点向上的1的个数,然后用单调栈维护大于等于当前高度的矩形,我们在用一个前缀和数组维护下一行的1,当某个高度从单调栈中被取出来时,我们用前缀和求出当前位置到取出来之后的栈顶这段的1的个数,看是否与当前位置到取出来之后的栈顶这段相等,相等的话这个矩形还能像下扩展,答案不增加,否则答案增加。

代码:

#include <bits/stdc++.h>
using namespace std;
const int  N = 3000 + 5;
int up[N], sum[N], maze[N][N];
char c[N];
int main()
{
    int n,m;
    cin >> n>> m;
    for(int i = 0 ;i < n; i++ ){
        cin >> (c + 1);
        for(int j = 1; j <= m; j ++){
            maze[i][j] = c[j] - '0';
        }
    }

    int ans = 0;
    for(int i = 0; i < n; i ++){
        stack<int > st;
        st.push(0);
        for(int j = 1; j <= m + 1;j ++){
            up[j] = maze[i][j] == 1? up[j] + 1 :0;
            sum[j] = sum[j - 1] + maze[i + 1][j];
            while(st.size() > 0&&up[st.top()] > up[j]){

                int x= st.top();
                st.pop();
                if(sum[j - 1] - sum[st.top()] < j - st.top() - 1 && up[st.top()] < up[x]){

                    ans ++;
                }
            }
            st.push(j);
        }

    }
    cout << ans << endl;
}

 

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值