数论复习笔记

博客介绍了线性筛法用于求解素数个数和素数密度的算法,以及算数基本定理在整数分解和因子计数中的应用。通过实例展示了如何高效地筛选一定范围内的素数,并提供了代码实现。此外,还探讨了素数分布的规律和计算合数因子的方法。
摘要由CSDN通过智能技术生成

1.线性筛

int Mark[MAXSIZE];  
int prime[MAXSIZE];  
  
//判断是否是一个素数  Mark 标记数组 index 素数个数  
int Prime(){  
    int index = 0;  
    for(int i = 2; i < MAXSIZE; i++){  
        //如果未标记则得到一个素数  
        if(Mark[i] == 0) prime[++index] = i;  
        //标记目前得到的素数的i倍为非素数  
        for(int j = 1; j <= index && prime[j] * i < MAXSIZE; j++){  
            Mark[i * prime[j]] = 1;  
            if(i % prime[j] == 0) break;  
        }  
    }  
    return index;  
}

P3912 素数个数

Code

#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int R(){int a=0,b=1;char c=getchar();while(c<'0'||c>'9'){if(c=='-')b=-1;c=getchar();}while(c>='0'&&c<='9'){a=a*10+c-'0';c=getchar();}return a*b;}
int n,prime[10000000],prime_cnt;
bool vis[100000010];
int main(){
    n=R();
    for(int i=2;i<=n;++i){
        if(!vis[i]) prime[++prime_cnt]=i;
        for(int j=1;j<=prime_cnt&&i*prime[j]<=n;++j){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)break;
        }
    }
    printf("%d",prime_cnt);
	return 0;
}

P1835 素数密度

 

题解:

[L,R]最多只有10^6,而数字最大为2^31,只需要筛sqrt(2^31)也就是50000以内的素数,然后用这些素数来筛[L,R]内的合数,最后统计没被标记的数的数量即为[L,R]内的素数个数

注意:当L=1时,ans需要 -- ,因为1没办法被筛掉

Code

#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline ll Read(){ll a=0,b=1;char c=getchar();while(c<'0'||c>'9'){if(c=='-')b=-1;c=getchar();}while(c>='0'&&c<='9'){a=a*10+c-'0';c=getchar();}return a*b;}
ll prime[50010],prime_cnt;
bool vis[50010],bj[1000010];
void Prime(){
    ll Max=50000;
    for(ll i=2;i<=Max;++i){
        if(!vis[i])prime[++prime_cnt]=i;
        for(ll j=1;j<=prime_cnt&&i*prime[j]<=Max;++j){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)break;
        }
    }
}
int main(){
    Prime();
    ll L=Read(),R=Read();
    for(ll i=1;i<=prime_cnt;++i){
        ll j=ceil(L*1.0/prime[i]);
        if(j==1)j++;
        for(;j*prime[i]<=R;++j)bj[j*prime[i]-L]=1;
    }
    ll ans=0;
    for(ll i=0;i<=R-L;++i)
        if(!bj[i])ans++;
    if(L==1)ans--;
    printf("%lld",ans);
	return 0;
}

2.算数基本定理:

任何一个大于1的正整数都可以唯一地表示成若干个素数的乘积。

N=p{_{1}}^{c_{1}}*p{_{2}}^{c_{2}}*...*p{_{r}}^{c_{r}}

3.求n的正因子个数D(n) 和所有因子之和φ(n)

D(n)=(c_{1}+1)*(c_{2}+1)*...*(c_{r}+1)

\Phi (n)=\frac{p_{1}^{a_{1}+1}-1}{p_{1}-1}*\frac{p_{2}^{a_{2}+1}-1}{p_{2}-1}*...*\frac{p_{r}^{a_{r}+1}-1}{p_{r}-1}

4. a*b=gcd(a,b)*lcm(a,b)

5.求N!的素因子分解中素数p的幂 f(N,p)

f(N,p) = f(N/p,p)+N/p 

扩展:

6.求   \binom{m}{n} mod p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值