tensorflow_1.14.0
兰钧
这个作者很懒,什么都没留下…
展开
-
卷积神经网络进阶实战(Resnet,InceptionNet,MobileNet的思想概括)
Resnet:(简易思想)网络结构:先经过一个卷积层,再经过一个池化层,然后再经过若干个残差连接块,在经过一个残差连接块之后,会有一个降采样的操作(By max-pooling或卷积层的步长等于2)。残差连接结构的输入分成两部分,第一部分经过卷积层做一些事情,第二部分直接传过来加到经过卷积层之后的输出上面。这样的结构在实现过程中会遇到什么问题呢?在某一次经过某个残差连接块的时候可能会做降采样。输入经过卷积层之后可能会做一个降采样,使得它的输入变成原来的1/2,但是恒等变换是不会做变化的,所以在做原创 2020-09-09 09:30:20 · 683 阅读 · 0 评论 -
numpy文件查看文件内容(vgg16.npy)
例如:vgg16.npy,vgg19.npyimport numpy as npvgg16_data = np.load('./style_transfer_data/vgg16.npy', encoding='latin1')print(type(vgg16_data)) #Numpy的多维矩阵print(vgg16_data)data_dict = vgg16_data.item()#将key-value形式转换为字典print(data_dict.keys())print(len原创 2020-09-09 09:30:46 · 1524 阅读 · 0 评论 -
TF1.0与TF2.0的区别?,怎样将TF1.0代码转为TF2.0代码?
1、TF1.0与TF2.0的区别2、API变动3、如何升级示例:TF1.0代码:TF2.0代码:原创 2020-09-09 09:31:45 · 1806 阅读 · 0 评论 -
图像风格转换实战(TF1.0-V1)
无监督问题,不存在结果,生成问题:图像风格转换图像分类是有监督问题不断调整I‘的值,使得f – f’越来越小,当f – f’足够小的时候,认为I与I‘足够相近。结论:越低层的内容特征,越能得到精细的内容特征效果,越高层的风格特征越能得到越抽象的风格特质结果。损失函数:某一层的特征值的平方差。F:图像输入到卷积神经网络中去得到的某一层的激活值。对应位置上和待生成的...原创 2020-09-09 09:30:35 · 286 阅读 · 0 评论 -
Tensorflow实战VGG
我们课上实现的这个不是VGG Net,是一个普通结构的卷积网络。而且VGG也不是指一个模型,而是根据不同参数控制的一组模型,ResNet同理。1、TF1.0import tensorflow as tfimport osimport pickleimport numpy as npCIFAR_DIR = "./cifar-10-batches-py"print(os.list...原创 2020-09-09 09:32:35 · 303 阅读 · 0 评论 -
最基本的卷积神经网络实战并尝试转化
1、TF2.0实战模型结构Model: "sequential"_________________________________________________________________Layer (type) Output Shape Param # =============================...原创 2020-09-09 09:33:22 · 218 阅读 · 0 评论 -
神经网络入门(机器学习、深度学习简介,神经元-logistic回归模型,神经元多输出,目标函数,梯度下降,神经元实战,神经网络基本概念与实战)
1、机器学习、深度学习简介上面这张图形象的表达了机器学习与深度学习的关系,机器学习是实现人工智能的方法,深度学习是实现机器学习算法的技术。机器学习是将无序数据转化为价值的方法,机器学习的价值是从数据中抽取规律,并用来预测未来。2、神经元-logistic回归模型神经元是最小的神经网络,如下图所示计算方法举例:(未考虑偏置b)偏...原创 2020-09-09 09:31:14 · 376 阅读 · 0 评论 -
tensorflow1.0实战(实现全连接网络,Dataset使用,自定义estimator))
补充原创 2020-09-09 09:33:41 · 770 阅读 · 0 评论