HDU 5124 lines 离散化 / 树状数组离散化

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124

题意:

       坐标轴上给出n条线段,问坐标轴上被最多线段覆盖的点。

思路:

首先,我们应该知道,对于线段x~y,可以用x位置加一和y+1位置减一然后遍历坐标轴的方法统计最优解。

但因为点坐标数据范围10^9,所以数组肯定装不下,所以离散化一下,压缩为10^5的数据量,再遍历1~2*n就可以了。

注意排序时如果坐标相同那么标记为1的要在-1的前面,这里因为每个1和-1单独占据一个元素的位置,所以-1在y+1位

置或者y位置不影响最终值。(树状数组因为要在c上加减,所以得严格按照x,y+1的形式)。

仅离散化代码:

using namespace std;
struct point
{
    int x,v,index;
}a[150000*2];
bool cmp(point aa,point bb)
{
    if(aa.x==bb.x)return aa.v>bb.v;//关键,必须先把能覆盖d点的线段全加上
    return aa.x<bb.x;
}
int num[150000*2];
int main()
{
   int t;
   scanf("%d",&t);
   while(t--){
       int n;
       memset(a,0,sizeof(a));
       memset(num,0,sizeof(num));
       scanf("%d",&n);
       for(int  i=1;i<=n;++i){
           scanf("%d%d",&a[i].x,&a[i+n].x);
           a[i].v=1;
           a[i+n].v=-1;//每个元素单独占一个格子,不会出现丢失解的情况,无所谓y,y+1
       }
       sort(a+1,a+1+2*n,cmp);
       int kk=1;
       LL ans=-1;
       LL tmp=0;
       for(int i=1;i<=2*n;++i){
            tmp+=a[i].v;
            ans=max(ans,tmp);
       }
       printf("%lld\n",ans);
   }
   return 0;

}

树状数组+离散化:

#include <iostream>
#define LL long long
using namespace std;
struct point
{
    int x,v,index;
}a[150000*2];
bool cmp(point aa,point bb)
{
    //if(aa.x==bb.x)return aa.v>bb.v;
    return aa.x<bb.x;
}
int num[150000*2];
int c[150000*2];
void add(int x,int v,int n)
{
    for(;x<=n;x+=x&-x)c[x]+=v;
}
LL ask(int x)
{
    LL ans=0;
    for(;x;x-=x&-x)ans+=c[x];
    return ans;
}
int main()
{
   int t;
   scanf("%d",&t);
   while(t--)
   {
       int n;
       memset(a,0,sizeof(a));
       memset(c,0,sizeof(c));
       memset(num,0,sizeof(num));
       scanf("%d",&n);
       for(int  i=1;i<=n;++i){
           scanf("%d%d",&a[i].x,&a[i+n].x);
           a[i].v=1;
           a[i+n].v=-1;
           a[i].index=i;
           a[i+n].index=i+n;
       }
       sort(a+1,a+1+2*n,cmp);
       num[a[1].index]=1;
       int kk=1;
       for(int i=2;i<=2*n;++i){
          if(a[i].x==a[i-1].x)num[a[i].index]=num[a[i-1].index];
          else num[a[i].index]=num[a[i-1].index]+1,kk++;
//计算a【i】在树状数组上的位置,多个a【i】可能在同一个位置。
       }
       LL ans=-1;
       LL tmp=0;
       for(int i=1;i<=2*n;++i){
          add(a[i].v==1?num[a[i].index]:num[a[i].index]+1,a[i].v,kk);
//-1的要加在后一位上,注意范围kk;
       }
       for(int i=1;i<=kk;++i)ans=max(ans,ask(i));//树状数组范围1~kk
       printf("%lld\n",ans);
   }
   return 0;

}

    

The end;

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值