链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124
题意:
坐标轴上给出n条线段,问坐标轴上被最多线段覆盖的点。
思路:
首先,我们应该知道,对于线段x~y,可以用x位置加一和y+1位置减一然后遍历坐标轴的方法统计最优解。
但因为点坐标数据范围10^9,所以数组肯定装不下,所以离散化一下,压缩为10^5的数据量,再遍历1~2*n就可以了。
注意排序时如果坐标相同那么标记为1的要在-1的前面,这里因为每个1和-1单独占据一个元素的位置,所以-1在y+1位
置或者y位置不影响最终值。(树状数组因为要在c上加减,所以得严格按照x,y+1的形式)。
仅离散化代码:
using namespace std;
struct point
{
int x,v,index;
}a[150000*2];
bool cmp(point aa,point bb)
{
if(aa.x==bb.x)return aa.v>bb.v;//关键,必须先把能覆盖d点的线段全加上
return aa.x<bb.x;
}
int num[150000*2];
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n;
memset(a,0,sizeof(a));
memset(num,0,sizeof(num));
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d%d",&a[i].x,&a[i+n].x);
a[i].v=1;
a[i+n].v=-1;//每个元素单独占一个格子,不会出现丢失解的情况,无所谓y,y+1
}
sort(a+1,a+1+2*n,cmp);
int kk=1;
LL ans=-1;
LL tmp=0;
for(int i=1;i<=2*n;++i){
tmp+=a[i].v;
ans=max(ans,tmp);
}
printf("%lld\n",ans);
}
return 0;
}
树状数组+离散化:
#include <iostream>
#define LL long long
using namespace std;
struct point
{
int x,v,index;
}a[150000*2];
bool cmp(point aa,point bb)
{
//if(aa.x==bb.x)return aa.v>bb.v;
return aa.x<bb.x;
}
int num[150000*2];
int c[150000*2];
void add(int x,int v,int n)
{
for(;x<=n;x+=x&-x)c[x]+=v;
}
LL ask(int x)
{
LL ans=0;
for(;x;x-=x&-x)ans+=c[x];
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
memset(a,0,sizeof(a));
memset(c,0,sizeof(c));
memset(num,0,sizeof(num));
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d%d",&a[i].x,&a[i+n].x);
a[i].v=1;
a[i+n].v=-1;
a[i].index=i;
a[i+n].index=i+n;
}
sort(a+1,a+1+2*n,cmp);
num[a[1].index]=1;
int kk=1;
for(int i=2;i<=2*n;++i){
if(a[i].x==a[i-1].x)num[a[i].index]=num[a[i-1].index];
else num[a[i].index]=num[a[i-1].index]+1,kk++;
//计算a【i】在树状数组上的位置,多个a【i】可能在同一个位置。
}
LL ans=-1;
LL tmp=0;
for(int i=1;i<=2*n;++i){
add(a[i].v==1?num[a[i].index]:num[a[i].index]+1,a[i].v,kk);
//-1的要加在后一位上,注意范围kk;
}
for(int i=1;i<=kk;++i)ans=max(ans,ask(i));//树状数组范围1~kk
printf("%lld\n",ans);
}
return 0;
}
The end;