Codeforces Round #140 (Div. 1) C. Anniversary(斐波那契数列的GCD性质+快速幂求斐波那契数列)

题意翻译

    设 F 是斐波那契数列,在 [l,r] 中选 k 个数 a_{1}...a_{k}​ ,使得 gcd(F_{a_{1}},F_{a_{2}},...,F_{a_{k}}) 尽可能大,

输出对 m 取模后的结果。

样例输入输出:

题解:from 洛谷

          首先我们考虑斐波那契数列F(n)的一个性质:

                             gcd(F(a),F(b))=F(gcd(a,b))

           然后只要找到最大的x使得x的倍数在[l,r]里大于或者等于k个即可.

猜猜这个x能不能二分?

    我竟然对不能二分的东西写了二分,而且一开始以为自己二分萎了后

来才发现根本不能二分,调了5个小时!(x 在 [l,r]中的倍数个数不会随着 x 

增大而增多)。

    根据数据范围我们用\sqrt n​ 的枚举. 假设存在一个数字q,对于q−1来说,它在[[l,r]内的倍数

的个数变化了,这样的 q 存在\sqrt(r)个.由于我们要求的只是最大值,我们只需要对于\sqrt r

内的每一个i判断ii和r/i的倍数在[l,r]是不是大于或者等于k个即可.这样可以求出ans,答案

就是第ans个斐波那契数,用矩阵快速幂即可.

代码实现:

#include<iostream>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int N=2e5+100;
LL f[2],arr[2][2],mod;
void mul(LL f[2],LL a[2][2]){
 
	LL c[2];
	memset(c,0,sizeof(c));
	for(int i=0;i<2;i++){
		for(int j=0;j<2;j++){
			c[i]=(c[i]+f[j]*a[i][j]%mod)%mod;
		}
	}
	memcpy(f,c,sizeof(c));
	
}
void mulself(LL a[2][2]){
	LL c[2][2];
	memset(c,0,sizeof(c));
	for(int i=0;i<2;i++){
		for(int j=0;j<2;j++){
			for(int k=0;k<2;k++){
				c[i][j]=(c[i][j]+a[i][k]*a[k][j]%mod)%mod;
			}
		}
	}
	memcpy(a,c,sizeof(c));
}
bool judge(LL x,LL l,LL r,LL k){
	
	return (r/x-(l-1)/x)>=k;
	
}
int main(){
	
	LL l,r,k,n,tmp;
	while(cin>>mod>>l>>r>>k){
		n=0;
		//这里不能用二分,不满足单调性 
		for(LL i=1;i*i<=r;i++){
			if(judge(i,l,r,k)){
				n=max(n,i);
			}
			if(r/i!=i&&judge(r/i,l,r,k)){
				n=max(n,r/i);
			}
		}
		
		
		//求斐波那契数列第 N 项 
		f[0]=0,f[1]=1;
		arr[0][0]=0,arr[0][1]=1,arr[1][0]=1,arr[1][1]=1;
		while(n){
			if(n&1)mul(f,arr);
			mulself(arr);
			n>>=1;
 
		}
		cout<<f[0]<<endl;
		
	}
	return 0;
		
} 

THE END;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值