2487 小b和环 (简单二维递推DP,环形处理)

2487 小b和环

 

小b有一个长度为n的环,每个点上有个数字。

现在请你选出一些点,满足选出的任意两个点在环上不相邻,且选出的点的数字之和最大,

你只需输出这个最大值。

 收起

输入

第一行输入一个数n,其中0<n≤50000;
第二行输入n个非负整数,第i个数表示环上顺时针第i个点上的数字,以空格隔开。
0<=每个点上的数字<=10000。

输出

输出一个数,表示最大值。

输入样例

4
1 2 3 1

输出样例

4

思路:

      最近做了不少这种一不小心就2^N的dp,这题算是最简单的一个,

状态十分简单,就是取和不取,完全没有后效性。

     难点在于环形的处理,题解提供思路跑两边dp,对于第一个取还是不取

做强制规定,并初始化对应边界。

代码实现:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<math.h>
#include<set>
#include<algorithm>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int N=2e5+100;
const int M=4e5+100;
int arr[N],dp[N][2];
int main() {

	int n,ans;
	while(cin>>n){
		ans=0;
		memset(dp,0,sizeof(dp));
		
		for(int i=1;i<=n;i++){
			cin>>arr[i];
		}
		//
		dp[1][1]=arr[1];
		dp[2][1]=0;dp[2][0]=dp[1][1];
		for(int i=3;i<=n;i++){
			
			dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
			dp[i][1]=dp[i-1][0]+arr[i];
		}
		ans=max(dp[n][0],ans);
		
		memset(dp,0,sizeof(dp));
		
		dp[1][1]=0;
		dp[1][0]=0;
		dp[2][0]=0;
		dp[2][1]=arr[2];
		for(int i=3;i<=n;i++){
			
			dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
			dp[i][1]=dp[i-1][0]+arr[i];
		}
		ans=max(ans,dp[n][1]);
		ans=max(ans,dp[n][0]);
		cout<<ans<<endl;
		
	}
	
	return 0;
}

THE END;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值