根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
递归法
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def buildTree(self, preorder, inorder):
"""
:type preorder: List[int]
:type inorder: List[int]
:rtype: TreeNode
"""
if len(preorder) == 0:
return None
lenPre = len(preorder)
lenIn = len(inorder)
rootVal = preorder[0]
index = inorder.index(rootVal)
leftPreorder = preorder[1:1+index] if 1+index <= lenPre and 1 < lenPre else []
rightPreorder = preorder[1+index:] if 1+index <lenPre else []
leftInorder = inorder[:index]
rightInorder = inorder[index+1:] if index+1 < lenPre else []
root = TreeNode(rootVal)
root.left = self.buildTree(leftPreorder, leftInorder)
root.right = self.buildTree(rightPreorder, rightInorder)
return root
使用前序遍历和中序遍历的序列构造二叉树时,最重要的是寻找到当前的根节点。根据前序遍历我们能很快找到当前根节点,即为前序序列的第一个元素。确定了根节点之后我们可以使用中序遍历知道哪些节点在左边哪些在右边。因为中序遍历先遍历左节点再是根节点,最后是右子节点,所以可以利用根节点的位置将剩余的元素分成两部分。这样我们就已经知道了左子树的节点个数,根据这个个数我们又能进一步的得出在前序遍历序列中左子树和右子树的分界点。最后我们将重新分配好的左右前中序列,构建新的左右子树。
需要注意的边界条件是当序列长度为0时,表示节点为空。此外还需要注意数组边界,预防越界访问。(python中用切片的方式取值不需要注意这个)