leetcode 105. 从前序和中序遍历构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。


注意:
你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:

    3
   / \
  9  20
      /  \
   15   7


递归法

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def buildTree(self, preorder, inorder):
        """
        :type preorder: List[int]
        :type inorder: List[int]
        :rtype: TreeNode
        """
        if len(preorder) == 0:
            return None
        lenPre = len(preorder)
        lenIn = len(inorder)
        rootVal = preorder[0]
        index = inorder.index(rootVal)
        leftPreorder = preorder[1:1+index] if 1+index <= lenPre and 1 < lenPre else []
        rightPreorder = preorder[1+index:] if 1+index <lenPre else []
        leftInorder = inorder[:index]
        rightInorder = inorder[index+1:] if index+1 < lenPre else []
        root = TreeNode(rootVal)
        root.left = self.buildTree(leftPreorder, leftInorder)
        root.right = self.buildTree(rightPreorder, rightInorder)
        return root

使用前序遍历和中序遍历的序列构造二叉树时,最重要的是寻找到当前的根节点。根据前序遍历我们能很快找到当前根节点,即为前序序列的第一个元素。确定了根节点之后我们可以使用中序遍历知道哪些节点在左边哪些在右边。因为中序遍历先遍历左节点再是根节点,最后是右子节点,所以可以利用根节点的位置将剩余的元素分成两部分。这样我们就已经知道了左子树的节点个数,根据这个个数我们又能进一步的得出在前序遍历序列中左子树和右子树的分界点。最后我们将重新分配好的左右前中序列,构建新的左右子树。

需要注意的边界条件是当序列长度为0时,表示节点为空。此外还需要注意数组边界,预防越界访问。(python中用切片的方式取值不需要注意这个)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值