Seaborn: 是在matplotlib的基础上进行了更高级的API封装, 从而使得作图更加容易, 在大多数情况下使用seaborn就能做出很具有吸引力的图
如果提示没有, 可以在cmd命令行里输入:
pip install seaborn
进行下载
import seaborn as sn
1. 直方图
x1 = np.random.normal(loc=0, scale=1, size=1000)
# bins 柱子的数量(宽度)(值越大越窄)
# kde 是否显示核密度估计图, 默认显示, 设置False不显示
sn.distplot(x1, bins=100, kde=False)
pli.show()
# rug 显示观测的小细条(边际毛毯), 默认为False不显示, 设置为True
sn.distplot(x1, bins=100, kde=False, rug=True)
pli.show()
2. 核密度估计图+直方图+边际毛毯
# hist 设置为False 不会显示条形图
sn.distplot(x1, hist=True, bins=20, kde=Ture, rug=True)
3. 直方图+核密度估计图
x2 = np.random.randint(0, 100, 500)
sn.distplot(x2)
其它的搭配自己调试
4. 散点图
sn.jointplot(x='数据', y='数据', data='数据来源')
5. 二维直方图
# kind 图的类型
sn.jointplot(x='数据', y='数据', data='数据来源', kind='hex')
plt.show()
6. 二维核密度估计图
sn.jointplot(x='数据', y='数据', data='数据来源', kind='kde')
plt.show()
7. 小提琴图
# 类别数据可视化
exercise = sn.load_dataset('exercise ')
sn.violinplot(x='diet', y='pulse', data=exercise, hue='kind')
plt.show()
8. 柱状图
sn.barplot(x='diet', y='pulse', data=exerise, hue='kind')
9. 点图
sn.pointplot(x='diet', y='pulse', data=exerise, hue='kind')
10. 圆饼
# labels=范围对应的标签
plt.pie(数据, labels=['x', 'x', 'x'], autopct='%.1%%')
11. 将图片保存到本地
plt.savefing('文件名称.png')
plt.show()