78.子集
思路:
这是经典的回溯法的题目:
定义一个回溯方法 dfs(first, temp,nums),第一个参数为索引 first,第二个参数为当前子集temp。
如果当前子集构造完成,将它添加到输出集合中。
否则,从 first 到 mums.size()-1 遍历索引 i。
将整数 nums[i] 添加到当前子集 curr。
继续向子集中添加整数:dfs(i + 1, temp,nums)。
从 curr 中删除 nums[i] 进行回溯。
代码
class Solution {
public:
vector<vector<int>> ans;
int k;//限制temp的长度
void dfs(int first,vector<int>& temp,vector<int>&nums){
if(temp.size()==k)
ans.push_back(temp);
for(int i=first;i<nums.size();i++){
temp.push_back(nums[i]);
dfs(i+1,temp,nums);
temp.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
vector<int> temp;
for(k=0;k<=nums.size();k++){
dfs(0,temp,nums);
}
return ans;
}
};
79.单词搜索
思路
此题类似N皇后问题,是一个经典模版,应当熟悉。
依然使用回溯法求解,也就是dfs和状态重制,只要熟悉了N皇后问题,此题的思路就不难理顺,只需要在一些细节上多加注意即可
代码
class Solution {
public:
int dx[4]={-1,0,1,0};
int dy[4]={0,1,0,-1};
bool visited[210][210]={false};
bool dfs(vector<vector<char>>& board,string word,int step,int x,int y){
if(step==word.size()-1)
return board[x][y]==word[step];
if(board[x][y]==word[step]){
visited[x][y]=true;
for(int k=0;k<4;k++){
int newx=x+dx[k];
int newy=y+dy[k];
if(newx>=0&&newx<board.size()&&newy>=0&&newy<board[0].size()&&!visited[newx][newy]){
if(dfs(board,word,step+1,newx,newy))
return true;
}
}
visited[x][y]=false;
}
return false;
}
bool exist(vector<vector<char>>& board, string word) {
for(int i=0;i<board.size();i++){
for(int j=0;j<board[0].size();j++){
if(dfs(board,word,0,i,j)){
return true;
}
}
}
return false;
}
};
84.柱状图中的最大矩形
思路
采用分治法:
通过观察,可以发现,最大面积矩形存在于以下几种情况:
确定了最矮柱子以后,矩形的宽尽可能往两边延伸。
在最矮柱子左边的最大面积矩形(子问题)。
在最矮柱子右边的最大面积矩形(子问题)。
如图:
代码
class Solution {
public:
int calculate(vector<int>& heights,int start,int end){
int minheight = INT_MAX;
int index=start;
if(start>end) return 0;
for(int i=start;i<=end;i++){
if(heights[i]<minheight){
minheight=heights[i];
index=i;
}
}
int area1 = minheight*(end-start+1);
int area2 = calculate(heights,start,index-1);
int area3 = calculate(heights,index+1,end);
return max(area1,max(area2,area3));
}
int largestRectangleArea(vector<int>& heights) {
int max = calculate(heights,0,heights.size()-1);
return max;
}
};
85.最大矩形
思路
将如图的局部看成是竖直放置的柱状图,利用动态规划的方法,定义二维数组dp,dp[i][j]表示以matrix[i][j]为结束时,第i行最长的宽度,那么:
dp[i][j]= j ==0?dp[i][j-1]+1 (当matrix[I][j]==1)
之后,向上不断更新最大面积值,将matrix全部遍历之后,便可以得出结果。
代码
class Solution {
public int maximalRectangle(char[][] matrix) {
if (matrix.length == 0) return 0;
int maxarea = 0;
int[][] dp = new int[matrix.length][matrix[0].length];
for(int i = 0; i < matrix.length; i++){
for(int j = 0; j < matrix[0].length; j++){
if (matrix[i][j] == '1'){
// compute the maximum width and update dp with it
dp[i][j] = j == 0? 1 : dp[i][j-1] + 1;
int width = dp[i][j];
// compute the maximum area rectangle with a lower right corner at [i, j]
for(int k = i; k >= 0; k--){
width = Math.min(width, dp[k][j]);
maxarea = Math.max(maxarea, width * (i - k + 1));
}
}
}
} return maxarea;
}
}