tensorflow的奇妙下划线,形如(_,变量)变量命名操作的解释

在尝试TensorFlow实践时,遇到一行使用下划线和变量的代码,引发困惑。下划线在Python中用于占位,当不需要返回值但需要执行运算时使用。例如,一个Session中运行运算,只需cost变量,不需要optimizer的返回值。通过拆分代码验证,下划线起到了占位的作用,保持代码优雅。理解这一技巧,有助于提升Python代码的优雅性。
摘要由CSDN通过智能技术生成

问题的发现

今天在尝试实现《深度学习之TensorFlow入门、原理与进阶实战》的时候书写了一段代码,其中有一行代码我甚是纠结了半天,代码如下:

_,c = sess.run([optimizer,cost],feed_dict={
   x:batch_xs,y:batch_yx})

就是这样一行代码的头部_,c的操作看得我迷了半天,为什么会有这样的表达,在我网上冲浪并且询问大佬过后终于明白了这的代码这样书写的原因。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值