NLP高频面试题(五十二)——BERT 变体详解

在现代自然语言处理领域,BERT 系列模型不断演进,衍生出多种变体,它们通过改进预训练任务、模型结构和训练策略,在不同应用场景下取得了更优表现。本文首先概览主要 BERT 变体(如 ALBERT、RoBERTa、ELECTRA、SpanBERT、Transformer-XL 等),随后针对以下几个关键问题逐一展开:句序预测(SOP)与下句预测(NSP)的区别;ALBERT 的参数缩减技术及跨层参数共享;RoBERTa 与 BERT 的差异;ELECTRA 中的替换标记检测任务;SpanBERT 的掩码策略;以及 Transformer-XL 如何实现长文本依赖建模。

BERT 变体篇

BERT(Bidirectional Encoder Representations from Transformers)自 2018 年提出以来,其双向 Transformer 架构与掩码语言模型(MLM)+下句预测(NSP)任务的设计,为文本理解任务奠定了基石。在此基础上,各种变体针对模型效率、预训练任务及长文本建模提出了创新:

  • ALBERT:引入跨层参数共享与因式分解嵌入,替换 NSP 为句序预测(SOP)任务&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值