AI
D.Fu
试问岭南应不好,却道此心安处是吾乡
展开
-
矩阵分解学习总结+python代码
矩阵分解常作为推荐系统中一个比较常用的方法,在传统的svd分解中,矩阵分解是把一个Rm×n=Mm×mΣUn×nTR_{m×n}=M_{m\times m}\Sigma U_{n\times n}^{T}Rm×n=Mm×mΣUn×nT对于M矩阵来说是RRTRR^TRRT ,而对于N是RTRR^TRRTR 的特征向量。但是R为稀疏矩阵(因为在用户的矩阵中部分用户对于部分物品是没有评分的...原创 2019-03-29 18:30:01 · 2181 阅读 · 0 评论 -
梯度下降的向量法(矩阵法)推导总结
梯度下降向量化推导再看了一篇博客后,了解了梯度下降向量化的推导公式,所以便写篇博客记录一下,加深一些记忆。首先,对于输入矩阵X为n*m的矩阵所以预测值为y^\widehat{y}y:MSE=12∗(y^−y)2=12(Xω−y)2\frac{1}{2} *(\widehat{y}-y)^2=\frac{1}{2}(X\omega-y)^221∗(y−y)2=21(Xω−y)2...原创 2019-04-06 11:55:42 · 6730 阅读 · 0 评论 -
BPR 学习小结
前天学习了贝叶斯个性化推荐,现在写篇博客来总结一下知识点,说是总结,其实也就是把里面的公式抄一下,说说其中的思想以及python代码的实现首先,贝叶斯个性化推荐是基于矩阵分解来做的,都是把USER-ITEM矩阵分解为一个user-k,一个item-k的矩阵的乘机形式,唯一不同的是BPR利用了贝叶斯定理的形式来处理这个矩阵,也就是P(θ∣>u)=P(θ∣>u)P(θ)...原创 2019-03-28 18:27:37 · 627 阅读 · 2 评论 -
降维——PCA
降维是机器学习中对数据的一种处理方法,目的是使数据变得易于处理,和数据可视化,提取有效信息摒弃无效信息。比如,你将要处理一组数据,这个数据每个样本都有几十个维度,当你对这组数据进行降维处理后每个样本变成了三维甚至是一维(也就是说用一维数据或者三维数据来表示这个样本),这时在对这个数据进行处理就会方便很多。同时你在压缩时也要考虑数据的有效性,意思是:在压缩数据后有效信息应尽可能地多,不能在进行降维...原创 2019-04-12 17:27:19 · 1782 阅读 · 1 评论