梯度下降的向量法(矩阵法)推导总结

这篇博客总结了梯度下降的向量化推导过程。从输入矩阵X开始,通过矩阵运算和迹的性质,逐步化简MSE损失函数,并应用梯度下降处理,最终得出更新权重ω的矩阵形式,简化了迭代计算。
摘要由CSDN通过智能技术生成

梯度下降向量化推导

再看了一篇博客后,了解了梯度下降向量化的推导公式,所以便写篇博客记录一下,加深一些记忆。
首先,对于输入矩阵X为m*n的矩阵

在这里插入图片描述

所以预测值为 y ^ \widehat{y} y :

在这里插入图片描述
MSE= 1 2 ∗ ( y ^ − y ) 2 = 1 2 ( X ω − y ) 2 \frac{1}{2} *(\widehat{y}-y)^2=\frac{1}{2}(X\omega-y)^2 21(y y)2=21(Xωy)2
接下来对式子进行化简
首先

X T X = ∑ X i j 2 X^T X=\sum X_{ij}^2 XTX=X

  • 8
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归是一种常见的机器学习算,用于预测一个连续的数值输出。给定一个由 $m$ 个样本组成的训练集,每个样本都有 $n$ 个特征,线性回归的目标是找到一条直线(或超平面),使得这个训练集上的预测值和真实值之间的误差最小。 假设有 $m$ 个样本,每个样本有 $n$ 个特征,用 $x^{(i)}=(x_1^{(i)},x_2^{(i)},\cdots,x_n^{(i)})$ 表示第 $i$ 个样本的特征向量,用 $y^{(i)}$ 表示第 $i$ 个样本的真实值,用 $w=(w_1,w_2,\cdots,w_n)$ 表示要求解的线性回归模型的参数向量,用 $b$ 表示偏置项,则线性回归模型可以表示为: $$h_w(x^{(i)})=w_1x_1^{(i)}+w_2x_2^{(i)}+\cdots+w_nx_n^{(i)}+b$$ 接下来,我们分别介绍线性回归的两种求解方式:解析解和梯度下降。 ### 1. 解析解 求解线性回归的解析解,即找到一组参数 $w$ 和 $b$,使得对于训练集中的每个样本 $(x^{(i)},y^{(i)})$,都有 $h_w(x^{(i)})\approx y^{(i)}$,并且使得所有样本上的误差 $\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2$ 最小。 为了找到最小化误差的参数 $w$ 和 $b$,我们可以对误差函数 $\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2$ 求偏导数,并令其为零,求得参数的解析解。具体来说,我们可以使用矩阵运算来求解,即: $$w=(X^TX)^{-1}X^Ty$$ 其中,$X$ 是一个 $m\times(n+1)$ 的矩阵,其第 $i$ 行为 $(1,x_1^{(i)},x_2^{(i)},\cdots,x_n^{(i)})$,$y$ 是一个 $m\times 1$ 的向量,其第 $i$ 个元素为 $y^{(i)}$。$X$ 矩阵中第一列的所有元素均为1,是为了方便计算偏置项 $b$。 ### 2. 梯度下降 求解线性回归的另一种方梯度下降梯度下降的基本思想是沿着误差函数最陡峭的方向,逐步调整模型的参数,使得误差函数最小化。 对于线性回归模型,我们可以定义误差函数为: $$J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2$$ 其中,$\frac{1}{2m}$ 是为了方便计算梯度,$h_w(x^{(i)})$ 是模型对第 $i$ 个样本的预测值,$y^{(i)}$ 是第 $i$ 个样本的真实值。 我们可以使用梯度下降来最小化误差函数 $J(w,b)$。具体来说,我们需要不断地更新参数 $w$ 和 $b$,使得其朝着误差函数最小化的方向移动。具体的更新方是: $$w_j:=w_j-\alpha\frac{\partial J(w,b)}{\partial w_j}$$ $$b:=b-\alpha\frac{\partial J(w,b)}{\partial b}$$ 其中,$\alpha$ 是学习率,控制每次更新的步长。 我们可以通过求偏导数的方来计算误差函数 $J(w,b)$ 对参数 $w$ 和 $b$ 的偏导数,具体来说: $$\frac{\partial J(w,b)}{\partial w_j}=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})x_j^{(i)}$$ $$\frac{\partial J(w,b)}{\partial b}=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})$$ 然后,我们就可以使用梯度下降来更新模型的参数了。具体来说,我们可以反复执行以下步骤,直到误差函数收敛或达到最大迭代次数: 1. 计算误差函数 $J(w,b)$ 的梯度,即 $\frac{\partial J(w,b)}{\partial w_j}$ 和 $\frac{\partial J(w,b)}{\partial b}$。 2. 使用学习率 $\alpha$ 和梯度更新模型的参数 $w$ 和 $b$,即: $w_j:=w_j-\alpha\frac{\partial J(w,b)}{\partial w_j}$ $b:=b-\alpha\frac{\partial J(w,b)}{\partial b}$ 下面是梯度下降推导过程: 首先,对误差函数 $J(w,b)$ 求偏导数,得到: $$\frac{\partial J(w,b)}{\partial w_j}=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})x_j^{(i)}$$ $$\frac{\partial J(w,b)}{\partial b}=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})$$ 然后,我们可以使用梯度下降来更新模型的参数 $w$ 和 $b$。具体来说,我们可以反复执行以下步骤,直到误差函数收敛或达到最大迭代次数: 1. 计算误差函数 $J(w,b)$ 的梯度,即 $\frac{\partial J(w,b)}{\partial w_j}$ 和 $\frac{\partial J(w,b)}{\partial b}$。 2. 使用学习率 $\alpha$ 和梯度更新模型的参数 $w$ 和 $b$,即: $w_j:=w_j-\alpha\frac{\partial J(w,b)}{\partial w_j}$ $b:=b-\alpha\frac{\partial J(w,b)}{\partial b}$ 下面是梯度下降推导过程: 首先,我们考虑更新参数 $w$。根据梯度下降公式,有: $$w_j:=w_j-\alpha\frac{\partial J(w,b)}{\partial w_j}$$ 代入误差函数 $J(w,b)$ 的定义式,有: $$w_j:=w_j-\alpha\frac{1}{2m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2$$ 对上式求偏导数,有: $$\frac{\partial J(w,b)}{\partial w_j}=\frac{\partial}{\partial w_j}\left(\frac{1}{2m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2\right)$$ $$=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})\frac{\partial}{\partial w_j}(h_w(x^{(i)})-y^{(i)})$$ $$=\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})x_j^{(i)}$$ 所以,我们可以将更新参数 $w$ 的公式改写为: $$w_j:=w_j-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})x_j^{(i)}$$ 这就是梯度下降更新参数 $w$ 的公式。同样地,我们可以推导出更新参数 $b$ 的公式,即: $$b:=b-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})$$ 这样,我们就可以使用梯度下降来求解线性回归模型的参数了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值