矩阵
qq_41672744
这个作者很懒,什么都没留下…
展开
-
基,特征向量和基础解系
1.基如果空间V中有n个线性无关的向量A1,A2,A3,…An可以线性地表示任何该空间中任意一个向量,则这n个向量是空间V的一个基。基,其实就是定义了一个空间。 易知,空间中有多个这样的基。 最简单的基就是空间V中的单位向量(范数是1的向量)。 例如:三维向量空间 V是R3,三个标准单位向量{E1 , E2, E3} ={(1,0,0),(0,1,0),(0,0,1)}。因为E1 ,E 2, E3...原创 2018-03-07 23:17:59 · 16613 阅读 · 0 评论 -
线性相关线性无关与正交
定义:有向量组 A1,A2,A3,…An若当且仅当k1=k2=k3=…Kn=0时k1*A1 + k2*A2 +k3*A3+…+KnAn = 0成立,则这三个向量是线性相关的有人要问,不是2点确定一条直线么,那么任意两点可以认为在一次函数y=kx+b上,所以任何2点都是线性相关的。从几何学上考虑,的确2点确定一条直线,但是当k=0时,即斜率为0,此时所有不论x如何变化,y=b,即平行于(或重合于)x...原创 2018-03-09 14:38:11 · 11828 阅读 · 3 评论