基,特征向量和基础解系

1.基

如果空间V中有n个线性无关的向量A1,A2,A3…An可以线性地表示任何该空间中任意一个向量则这n个向量是空间V的一个基。基,其实就是定义了一个空间。

 

易知,空间中有多个这样的基。 最简单的基就是空间V中的单位向量(范数是1的向量)。

 

例如:

三维向量空间 V是R3,三个标准单位向量{E1 , E2, E3} ={(1,0,0),(0,1,0),(0,0,1)}。

因为E1 ,E 2, E3彼此线性无关,又可以生成V, 因此向量组{E1 , E2, E3} 是 V的一个基。这个基的基向量是由标准单位向量组成,因此{E1 , E2, E3} 又称为三维向量空间V的标准基。


2. 特征向量和基础解系

A是矩阵,x是n维向量

基础解系是齐次方程组Ax=0的解

特征向量是由(A-λE)x=0对应的特征方程解得到的。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
非齐次线性方程组的基础解系与线性相关性之间存在一定的关系。 首先,我们来回顾一下非齐次线性方程组的定义。非齐次线性方程组是指方程组中至少有一个方程的右端项不为零的线性方程组。它的一般形式可以表示为: A * X = B 其中,A 是一个 m × n 的系数矩阵,X 是一个 n × 1 的未知向量,B 是一个 m × 1 的常数向量。 基础解系是指非齐次线性方程组的解空间中的一个,它可以表示为非齐次线性方程组的特解加上其对应齐次线性方程组的基础解系。 对于非齐次线性方程组来说,如果它有解,那么至少存在一个特解。如果非齐次线性方程组的特解是唯一的,那么基础解系为空集。否则,我们可以通过求解对应的齐次线性方程组来得到基础解系。 现在我们来看看如何判断基础解系的线性相关性。基础解系中的向量是非齐次线性方程组的解空间中的向量,它们满足非齐次线性方程组的所有约束条件。如果基础解系中的向量线性相关,说明其中至少存在一个向量可以由其他向量线性表示出来,即存在一个向量可以表示为其他向量的线性组合。 我们可以通过计算基础解系中的向量的秩来判断线性相关性。如果基础解系中的向量的秩小于向量的个数,说明存在线性相关关系;如果秩等于向量的个数,说明基础解系中的向量线性无关。 总结起来,非齐次线性方程组的基础解系的线性相关性可以通过计算基础解系中向量的秩来判断。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值