leetcode刷题(四)——寻找两个正序数组的中位数

        给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106

奇数组: [2 3 5] 对应的中位数为3

偶数组: [1 4 7 9] 对应的中位数为 (4 + 7) /2 = 5.5

#include <stdio.h>
#include <vector>
using namespace std;

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

class Solution {
public:
	double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
		int n = nums1.size();
		int m = nums2.size();

		if (n > m)  //保证数组1一定最短
		{
			return findMedianSortedArrays(nums2, nums1);
		}

		// Ci 为第i个数组的割,比如C1为2时表示第1个数组只有2个元素。LMaxi为第i个数组割后的左元素。RMini为第i个数组割后的右元素。
		int LMax1, LMax2, RMin1, RMin2, c1, c2, lo = 0, hi = 2 * n;  //我们目前是虚拟加了'#'所以数组1是2*n长度

		while (lo <= hi)   //二分
		{
			c1 = (lo + hi) / 2;  //c1是二分的结果
			c2 = m + n - c1;

			LMax1 = (c1 == 0) ? INT_MIN : nums1[(c1 - 1) / 2];
			RMin1 = (c1 == 2 * n) ? INT_MAX : nums1[c1 / 2];
			LMax2 = (c2 == 0) ? INT_MIN : nums2[(c2 - 1) / 2];
			RMin2 = (c2 == 2 * m) ? INT_MAX : nums2[c2 / 2];

			if (LMax1 > RMin2)
				hi = c1 - 1;
			else if (LMax2 > RMin1)
				lo = c1 + 1;
			else
				break;
		}
		return (max(LMax1, LMax2) + min(RMin1, RMin2)) / 2.0;
	}
};


int main(int argc, char *argv[])
{
	vector<int> nums1 = { 2,3, 5 };
	vector<int> nums2 = { 1,4,7, 9 };
	
	Solution solution;
	double ret = solution.findMedianSortedArrays(nums1, nums2);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值