如何理解Python装饰器?很多学员对此都有疑问,那么上海尚学堂python培训这篇文章就给予答复。
一、预备知识
首先要理解装饰器,首先要先理解在 Python 中很重要的一个概念就是:“函数是 First Class Member” 。这句话再翻译一下,函数是一种特殊类型的变量,可以和其余变量一样,作为参数传递给函数,也可以作为返回值返回,上海python培训。
1
2
3
4
5
|
def
abc():
print
(
"abc"
)
def
abc1(func):
func()<br>abc1(abc)
|
这段代码的输出就是我们在函数 abc 中输出的 abc 字符串。过程很简单,我们将函数 abc 作为一个参数传递给 abc1 ,然后,在 abc1 中调用传入的函数
再来看一段代码
1
2
3
4
5
|
def
abc1():
def
abc():
print
(
"abc"
)
return
abc
abc1()()
|
这段代码输出和之前的一样,这里我们将在 abc1 内部定义的函数 abc 作为一个变量返回,然后我们在调用 abc1 获取到返回值后,继续调用返回的函数。
好了,我们再来做一个思考题,实现一个函数 add ,达到 add(m)(n) 等价于 m+n 的效果。这题如果把之前的 First-Class Member 这一概念理清楚后,我们便能很清楚的写出来了
1
2
3
4
5
|
def
add(m):
def
temp(n):
return
m
+
n
return
temp
print
(add(
1
)(
2
))
|
嗯,这里输出就是 3 。
二、正说Python装饰器
看了前面的预备知识后,我们便可以开始今天的主题了
1、先来看一个需求吧
现在我们有一个函数
1
2
3
4
|
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
|
现在我们要给这个函数加上一些代码,来计算这个函数的运行时间。
我们大概一想,写出了这样的代码
1
2
3
4
5
6
7
|
import
time
def
range_loop(a,b):
time_flag
=
time.time()
for
i
in
range
(a,b):
temp_result
=
a
+
b
print
(time.time()
-
time_flag)
return
temp_result
|
先且不论,这样计算时间是不是准确的,现在我们要给如下很多函数加上一个时间计算的功能
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import
time
def
range_loop(a,b):
time_flag
=
time.time()
for
i
in
range
(a,b):
temp_result
=
a
+
b
print
(time.time()
-
time_flag)
return
temp_result
def
range_loop1(a,b):
time_flag
=
time.time()
for
i
in
range
(a,b):
temp_result
=
a
+
b
print
(time.time()
-
time_flag)
return
temp_result
def
range_loop2(a,b):
time_flag
=
time.time()
for
i
in
range
(a,b):
temp_result
=
a
+
b
print
(time.time()
-
time_flag)
return
temp_result
|
我们初略一想,嗯,Ctrl+C,Ctrl+V。emmmm 好了,现在你们不觉得这段代码特别脏么?我们想让他变得干净点怎么办?
我们想了想,按照之前说的 First-Class Member 的概念。然后写出了如下的代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import
time
def
time_count(func,a,b):
time_flag
=
time.time()
temp_result
=
func(a,b)
print
(time.time()
-
time_flag)
return
temp_result
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop1(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop2(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
time_count(range_loop,a,b)
time_count(range_loop1,a,b)
time_count(range_loop2,a,b)
|
嗯,看起来像那么回事,好了好了,我们现在新的问题又来了,我们现在是假设,我们所有函数都只有两个参数传入,那么现在如果想支持任意参数的传入怎么办?我们眉头一皱,写下了如下的代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import
time
def
time_count(func,
*
args,
*
*
kwargs):
time_flag
=
time.time()
temp_result
=
func(
*
args,
*
*
kwargs)
print
(time.time()
-
time_flag)
return
temp_result
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop1(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop2(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
time_count(range_loop,a,b)
time_count(range_loop1,a,b)
time_count(range_loop2,a,b)
|
好了,现在看起来,有点像模像样了,但是我们再想想,这段代码实际上改变了我们的函数调用方式,比如我们直接运行 range_loop(a,b) 还是没有办法获取到函数执行时间。那么现在我们如果不想改变函数的调用方式,又想获取到函数的运行时间怎么办?
很简单嘛,替换一下不就好了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import
time
def
time_count(func):
def
wrap(
*
args,
*
*
kwargs):
time_flag
=
time.time()
temp_result
=
func(
*
args,
*
*
kwargs)
print
(time.time()
-
time_flag)
return
temp_result
return
wrap
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop1(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
def
range_loop2(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
range_loop
=
time_count(range_loop)
range_loop1
=
time_count(range_loop1)
range_loop2
=
time_count(range_loop2)
range_loop(
1
,
2
)
range_loop1(
1
,
2
)
range_loop2(
1
,
2
)
|
emmmm,这样看起来感觉舒服多了?既没有改变原有的运行方式,也输出了函数运行时间。
但是。。。你们不觉得手动替换太恶心了么???喵喵喵???还有什么可以简化下的么??
好了,Python 知道我们是爱吃糖的孩子,给我们提供了一个新的语法糖,这也是今天的男一号,Decorator 装饰器
2、说说 Decorator
我们前面已经实现了,在不改变函数特性的情况下,给原有的代码新增一点功能,但是我们也觉得这样手动的替换,太恶心了,是的 Python 官方也觉得这样很恶心,所以新的语法糖来了
我们上面的代码可以写成这样了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import
time
def
time_count(func):
def
wrap(
*
args,
*
*
kwargs):
time_flag
=
time.time()
temp_result
=
func(
*
args,
*
*
kwargs)
print
(time.time()
-
time_flag)
return
temp_result
return
wrap
@time_count
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
@time_count
def
range_loop1(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
@time_count
def
range_loop2(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
range_loop(
1
,
2
)
range_loop1(
1
,
2
)
range_loop2(
1
,
2
)
|
哇,写到这里,你是不是恍然大悟!まさか???是的,其实 @ 符号其实是一个语法糖,他将我们之前的手动替换的过程交给了环境执行。好了用人话描述下,@ 的作用是将被包裹的函数作为一个变量传递给装饰函数/类,将装饰函数/类返回的值替换原本的函数。
@decorator
def abc():
pass
如同前面所讲的一样,实际上是发生了一个特殊的替换过程 abc=decorator(abc) ,好了我们来做几个题来练习下吧?
1
2
3
4
5
6
|
def
decorator(func):
return
1
@decorator
def
abc():
pass
abc()
|
这段代码会发生什么?答:会抛出异常。为啥啊?答:因为装饰的时候发生了替换,abc=decorator(abc) ,替换后 abc 的值为 1 。整数默认不能作为一个函数进行调用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
def
time_count(func):
def
wrap(
*
args,
*
*
kwargs):
time_flag
=
time.time()
temp_result
=
func(
*
args,
*
*
kwargs)
print
(time.time()
-
time_flag)
return
temp_result
return
wrap
def
decorator(func):
def
wrap(
*
args,
*
*
kwargs):
temp_result
=
func(
*
args,
*
*
kwargs)
return
temp_result
return
wrap
def
decorator1(func):
def
wrap(
*
args,
*
*
kwargs):
temp_result
=
func(
*
args,
*
*
kwargs)
return
temp_result
return
wrap
@time_count
@decorator
@decorator1
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
|
这段代码怎么替换的?答:time_count(decorator(decorator1(range_loop)))
嗯,现在是不是对装饰器什么的有了基本的了解?
3、扩展一下
现在,我想修改下前面写的 time_count 函数,让他支持传入一个 flag 参数,当 flag 为 True 的时候,输出函数运行时间,为 False 的时候不输出时间
我们一步步来,我们先假设新的函数叫做 time_count_plus
我们想实现的效果是这样的
1
2
3
4
5
|
@time_count_plus
(flag
=
True
)
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
|
嗯,我们看了下,首先我们调用了 time_count_plus(flag=True) 一次,将它返回的值作为一个装饰函数来替换 range_loop ,OK 那么我们首先 time_count_plus 要接收一个参数,返回一个函数对吧
def time_count_plus(flag=True):
def wrap1(func):
pass
return wrap1
好了,现在返回了一个函数来作为装饰函数,然后我们说了 @ 其实触发了一次替换过程,好那么我们现在的替换是不是 range_loop=time_count_plus(flag=True)(range_loop) 好了,现在大家应该很清楚了,我们在 wrap1 里面是不是还应该有一个函数并返回?
嗯,最终的代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def
time_count_plus(flag
=
True
):
def
wrap1(func):
def
wrap2(
*
args,
*
*
kwargs):
if
flag:
time_flag
=
time.time()
temp_result
=
func(
*
args,
*
*
kwargs)
print
(time.time()
-
time_flag)
else
:
temp_result
=
func(
*
args,
*
*
kwargs)
return
temp_result
return
wrap2
return
wrap1
@time_count_plus
(flag
=
True
)
def
range_loop(a,b):
for
i
in
range
(a,b):
temp_result
=
a
+
b
return
temp_result
|
是不是这样就清楚多啦!
4、再扩展一下
好了,我们现在有新的需求来了
m=3
n=2
def add(a,b):
return a+b
def sub(a,b):
return a-b
def mul(a,b):
return a*b
def div(a,b):
return a/b
现在我们有字符串 a , a 的值可能为 +、-、*、/ 那么现在,我们想根据 a 的值来调用对应的函数怎么办?
我们煎蛋一想,嗯,逻辑判断嘛
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
m
=
3
n
=
2
def
add(a,b):
return
a
+
b
def
sub(a,b):
return
a
-
b
def
mul(a,b):
return
a
*
b
def
div(a,b):
return
a
/
b
a
=
input
(
'请输入 + - * / 中的任意一个\n'
)
if
a
=
=
'+'
:
print
(add(m,n))
elif
a
=
=
'-'
:
print
(sub(m
-
n))
elif
a
=
=
'*'
:
print
(mul(m,n))
elif
a
=
=
'/'
:
print
(div(m,n))
|
但是这段代码,if else 是不是太多了点?我们仔细一想,用一下 First-Class Member 的特性,然后配合 dict 实现操作符和函数之间的关联。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
m
=
3
n
=
2
def
add(a,b):
return
a
+
b
def
sub(a,b):
return
a
-
b
def
mul(a,b):
return
a
*
b
def
div(a,b):
return
a
/
b
func_dict
=
{
"+"
:add,
"-"
:sub,
"*"
:mul,
"/"
:div}
a
=
input
(
'请输入 + - * / 中的任意一个\n'
)
func_dict[a](m,n)
|
emmmm,看起来不错啊,但是我们注册的过程能不能再简化一点? 嗯,这个时候装饰器语法特性就能用上了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
m
=
3
n
=
2
func_dict
=
{}
def
register(operator):
def
wrap(func):
func_dict[operator]
=
func
return
func
return
wrap
@register
(operator
=
"+"
)
def
add(a,b):
return
a
+
b
@register
(operator
=
"-"
)
def
sub(a,b):
return
a
-
b
@register
(operator
=
"*"
)
def
mul(a,b):
return
a
*
b
@register
(operator
=
"/"
)
def
div(a,b):
return
a
/
b
a
=
input
(
'请输入 + - * / 中的任意一个\n'
)
func_dict[a](m,n)
|
嗯,还记得我们前面说的使用 @ 语法的时候,实际上是触发了一个替换的过程么?这里就是利用这一特性,在装饰器触发的时候,注册函数映射,这样我们直接根据 'a' 的值来获取函数处理数据。另外请注意一点,我们这里没有必要修改原函数,所以我们没有必要写第三层的函数。
如果有熟悉 Flask 同学就知道,在调用 route 方法注册路由的时候,也是使用了这一特性 。
三、总结
其实全文下来,大家应该能知道这样一点东西。Python 中的装饰器其实是 First-Class Member 概念的更进一层应用,我们将函数传递给其余函数,包裹上新的功能后再行返回。@ 其实只是将这样一个过程进行了简化而已。
参考文章:
作者:Zheaoli 链接:https://juejin.im/post/5a314ad6f265da432e5c02a5
感谢您阅读,欢迎评论,更多文章或获取python学习资料请点击参看:上海python培训