每日一题: 从中序与后序遍历序列构造二叉树(中等)

106. 从中序与后序遍历序列构造二叉树

根据一棵树的中序遍历与后序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
    3
   / \
  9  20
    /  \
   15   7

思路:
在这里插入图片描述
上代码:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    Map<Integer,Integer> map  = new HashMap<>();
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        //中序存入
        for(int i = 0 ; i < inorder.length; i++){
           map.put(inorder[i],i);
        }

        //递归
        return helper(inorder,postorder,0,inorder.length-1,0,postorder.length-1);
          
    }
    private TreeNode helper(int[] in, int[] post, int inS, int inE, int postS, int postE){
       //说明数组无效
       if(inS>inE){
           return null;
       }     
        
        //利用后序的最后一个节点创建新的树的根节点
        TreeNode root =  new TreeNode(post[postE]);
        //后序遍历的最后一个节点post_last_node
        int postVal = post[postE];
        //后序遍历节点post_last_node在中序遍历中的位置(利用map直接以O(1)的复杂度取出索引)
        int inMid = map.get(postVal);
        //中序遍历的左子树的个数
        int inLeftNum = inMid-inS;

        /*
            中序左子树的范围[inS,inMid-1] 后序左子树的范围[postS,postS+inLeftNum-1]
            中序右子树的范围[inMid+1,inE] 后序右子树的范围[postS+inLeftNum,postE-1]
        */
        root.left=helper(in,post,inS,inMid-1,postS,postS+inLeftNum-1); 
        root.right=helper(in,post,inMid+1,inE,postS+inLeftNum,postE-1);
        return root;
    }
}
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页