24. 招募临时工

description

阿布有一片大农田,但是最近长满了杂草,所以他打算招募一批临时工。经估算,除杂草一共分为了n个时间段,其中第i个时间段至少需要a[i]个人。阿布经了解之后获知,一共有m类临时工可以招募,其中第i类可以在第s[i]到t[i]时间段工作,所需费用为f[i]。阿布为了农田的收益,希望用尽可能少的费用除去杂草,但是阿布不擅长找这种方案,于是他找到了你,希望你能给他一种最优的招募方案。

输入描述

第一行两个整数n,m,表示所需时间段,和可以招募的工人的种类

第二行为n个非负整数,表示第i个时间段需要的临时工人数

接下来m行每行三个整数,s[i],t[i],f[i],含义见上文,假定每种临时工的人数无限

输出描述

一个整数,表示你设计的最优方案的总费用

n在区间[1,1000],m在区间[1,6000]


 测试输入 期待的输出 时间限制 内存限制 额外进程
测试用例 1以文本方式显示
  1. 3 3↵
  2. 2 3 4↵
  3. 1 2 2↵
  4. 2 3 5↵
  5. 3 3 2↵
以文本方式显示
  1. 14↵
1秒153600KB0

code

  1. 好吧,一头雾水,附上几个帖子
  2. 这个题和志愿者招募的是一样的 P3980 [NOI2008] 志愿者招募
  3. 几乎全网都在转的做法 NOI 2008 志愿者招募 employee,建图的方式真的神
  4. 有待学习…
  5. 代码来源 https://m-sea.blog.luogu.org/solution-p3980
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>

using namespace std;

const int N = 1000 + 10, M = 20000 + 10;
const int inf = 0x3f3f3f3f;

int n, m, s, t, p[N];

struct edge
{
    int v;
    int w;
    int c;
    int nxt;
} e[M << 1];
int head[N];
inline void addEdge(int u, int v, int w, int c)
{
    static int cnt = 1;
    e[++cnt] = (edge){v, w, c, head[u]}; 
    head[u] = cnt;
    e[++cnt] = (edge){u, 0, -c, head[v]}; 
    head[v] = cnt;
}

int dis[N], inq[N], lst[N];
inline int spfa()
{
    memset(dis, 0x3f, sizeof(dis)), memset(lst, 0, sizeof(lst));
    queue<int> Q;
    Q.push(s);
    dis[s] = 0, inq[s] = 1;
    while(!Q.empty()) {
        int u = Q.front();
        Q.pop();
        inq[u] = 0;
        for(int i = head[u]; i; i = e[i].nxt) {
            int v = e[i].v, c = e[i].c;
            if(e[i].w && dis[u] + c < dis[v]) {
                dis[v] = dis[u] + c, lst[v] = i;
                if(!inq[v])
                    inq[v] = 1, Q.push(v);
            }
        }
    }
    return lst[t] != 0;
}

int main()
{
    // freopen("file in.txt", "r", stdin);
    int i;
    int from, to, cap;
    cin >> n >> m;
    s = 0, t = n + 2;
    for(i = 1; i <= n; ++i)
        cin >> p[i];
    for(i = 1; i <= n + 1; ++i) {
        if(p[i] - p[i - 1] > 0)
            addEdge(s, i, p[i] - p[i - 1], 0);
        else
            addEdge(i, t, p[i - 1] - p[i], 0);
    }
    for(i = 1; i <= n; ++i)
        addEdge(i + 1, i, inf, 0);
    for(i = 1; i <= m; ++i) {
        cin >> from >> to >> cap;
        addEdge(from, to + 1, inf, cap);
    }
    int ans = 0;
    while(spfa()) {
        int f = inf;
        for(i = lst[t]; i; i = lst[e[i ^ 1].v])
            f = min(f, e[i].w);
        for(i = lst[t]; i; i = lst[e[i ^ 1].v])
            e[i].w -= f, e[i ^ 1].w += f;
        ans += dis[t] * f;
    }
    printf("%d\n", ans);
    return 0;
}

  • 防止原帖被删,复制备用

这道题正确的解法是构造网络,求网络最小费用最大流,但是模型隐藏得较深,不易想到。构造网络是该题的关键,以下面一个例子说明构图的方法和解释。

例如一共需要4天,四天需要的人数依次是4,2,5,3。有5类志愿者,如下表所示:

种类12345
时间1-21-12-33-33-4
费用34356

设雇佣第i类志愿者的人数为X[i],每个志愿者的费用为V[i],第j天雇佣的人数为P[j],则每天的雇佣人数应满足一个不等式,如上表所述,可以列出

P[1] = X[1] + X[2] >= 4

P[2] = X[1] + X[3] >= 2

P[3] = X[3] + X[4] +X[5] >= 5

P[4] = X[5] >= 3

对于第i个不等式,添加辅助变量Y[i] (Y[i]>=0) ,可以使其变为等式

P[1] = X[1] + X[2] - Y[1] = 4

P[2] = X[1] + X[3] - Y[2] = 2

P[3] = X[3] + X[4] +X[5] - Y[3] = 5

P[4] = X[5] - Y[4] = 3

在上述四个等式上下添加P[0]=0,P[5]=0,每次用下边的式子减去上边的式子,得出

① P[1] - P[0] = X[1] + X[2] - Y[1] = 4

② P[2] - P[1] = X[3] - X[2] -Y[2] +Y[1] = -2

③ P[3] - P[2] = X[4] + X[5] - X[1] - Y[3] + Y[2] =3

④ P[4] - P[3] = - X[3] - X[4] + Y[3] - Y[4] = -2

⑤ P[5] - P[4] = - X[5] + Y[4] = -3

观察发现,每个变量都在两个式子中出现了,而且一次为正,一次为负。所有等式右边和为0。接下来,根据上面五个等式构图。

  • 每个等式为图中一个顶点,添加源点S和汇点T。
  • 如果一个等式右边为非负整数c,从源点S向该等式对应的顶点连接一条容量为c,权值为0的有向边;如果一个等式右边为负整数c,从该等式对应的顶点向汇点T连接一条容量为c,权值为0的有向边。
  • 如果一个变量X[i]在第j个等式中出现为X[i],在第k个等式中出现为-X[i],从顶点j向顶点k连接一条容量为∞,权值为V[i]的有向边。
  • 如果一个变量Y[i]在第j个等式中出现为Y[i],在第k个等式中出现为-Y[i],从顶点j向顶点k连接一条容量为∞,权值为0的有向边。

构图以后,求从源点S到汇点T的最小费用最大流,费用值就是结果。

根据上面的例子可以构造出如下网络,红色的边为每个变量X代表的边,蓝色的边为每个变量Y代表的边,边的容量和权值标已经标出(蓝色没有标记,因为都是容量∞,权值0)。

在这个图中求最小费用最大流,流量网络如下图,每个红色边的流量就是对应的变量X的值。

所以,答案为43+23+3*6=36。

上面的方法很神奇得求出了结果,思考为什么这样构图。我们将最后的五个等式进一步变形,得出以下结果

① - X[1] - X[2] + Y[1] + 4 = 0

② - X[3] + X[2] + Y[2] - Y[1] - 2 = 0

③ - X[4] - X[5] + X[1] + Y[3] - Y[2] + 3 = 0

④ X[3] + X[4] - Y[3] + Y[4] - 2 = 0

⑤ X[5] - Y[4] - 3 = 0

可以发现,每个等式左边都是几个变量和一个常数相加减,右边都为0,恰好就像网络流中除了源点和汇点的顶点都满足流量平衡。每个正的变量相当于流入该顶点的流量,负的变量相当于流出该顶点的流量,而正常数可以看作来自附加源点的流量,负的常数是流向附加汇点的流量。因此可以据此构造网络,求出从附加源到附加汇的网络最大流,即可满足所有等式。而我们还要求最小,所以要在X变量相对应的边上加上权值,然后求最小费用最大流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值