原帖链接:https://www.cnblogs.com/skywang12345/p/3603669.html
description
- 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
以十进制为例 - 示意图:
- 在上图中,首先将所有待比较树脂统一为统一位数长度,接着从最低位开始,依次进行排序。
按照个位数进行排序。
按照十位数进行排序。
按照百位数进行排序。
排序后,数列就变成了一个有序序列。
code
/******************************************
* @Author : 鱼香肉丝没有鱼
* @Date : 2021-09-20 12:55:54
* @LastEditors : 鱼香肉丝没有鱼
* @LastEditTime : 2021-11-24 01:29:41
******************************************/
// 基数排序
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
//得到数组中的最大值
int getMax(int* arr, int n)
{
int i, max;
max = arr[0];
for(i = 1; i < n; i++) {
if(arr[i] > max)
max = arr[i];
}
return max;
}
/*
* 对数组按照"某个位数"进行排序(桶排序)
*
* 参数说明:
* arr -- 数组
* n -- 数组长度
* exp -- 指数。对数组a按照该指数进行排序。
*
* 例如,对于数组a={50, 3, 542, 745, 2014, 154, 63, 616};
* (01) 当exp=1表示按照"个位"对数组a进行排序
* (02) 当exp=10表示按照"十位"对数组a进行排序
* (03) 当exp=100表示按照"百位"对数组a进行排序
* ...
*/
void countSort(int* arr, int n, int exp)
{
int* output = NULL; // 存储"被排序数据"的临时数组
int* num = NULL; //保存每一个元素的exp位的数字,也就是我们现在面对的那一位
output = new int[n];
num = new int[n];
int i, buckets[10] = {0};
for(i = 0; i < n; i++)
num[i] = (arr[i] / exp) % 10; //取出对应的数字,避免后面重复的计算
// 将数据出现的次数存储在buckets[]中
for(i = 0; i < n; i++)
buckets[num[i]]++;
// 更改buckets[i]。目的是让更改后的buckets[i]的值,
// 是该数据在output[]中的位置,即下标。小的在前,大的在后
for(i = 1; i < 10; i++)
buckets[i] += buckets[i - 1];
// 将数据存储到临时数组output[]中
for(i = n - 1; i >= 0; i--) {
output[buckets[num[i]] - 1] = arr[i];
buckets[num[i]]--;
}
// 将排序好的数据赋值给a[]
for(i = 0; i < n; i++)
arr[i] = output[i];
delete[] output;
delete[] num;
}
void radixSort(int* arr, int n)
{
int exp; // 指数。当对数组按个位进行排序时,exp=1;按十位进行排序时,exp=10;...
int max = getMax(arr, n); // 数组a中的最大值
// 从个位开始,对数组a按"指数"进行排序
for(exp = 1; max / exp > 0; exp *= 10)
countSort(arr, n, exp);
}
int main(int argc, char* argv[])
{
int n = 12;
int num[n] = {23, 45, 17, 11, 13, 89, 72, 26, 3, 17, 11, 13};
// int len =sizeof(num)/sizeof(num[0])
radixSort(num, n);
cout << "排序后的数组为:";
for(register int i = 0; i < n; i++)
cout << num[i] << " ";
cout << endl;
return 0;
}
// 排序后的数组为:
// 3 11 11 13 13 17 17 23 26 45 72 89
summary
- 时间复杂度为Θ(d(n+k)),这种排序基于我们之前将的计数排序,其中n表示待排序列的规模,d表示待排序列的最大位数,k表示每一位数的范围,这也是一种时间换空间的算法。