基数排序(Radix Sort)


原帖链接:https://www.cnblogs.com/skywang12345/p/3603669.html


description

  1. 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
    以十进制为例
  2. 示意图:
    在这里插入图片描述
  3. 在上图中,首先将所有待比较树脂统一为统一位数长度,接着从最低位开始,依次进行排序。
    按照个位数进行排序。
    按照十位数进行排序。
    按照百位数进行排序。
    排序后,数列就变成了一个有序序列。

code

/******************************************
 * @Author       : 鱼香肉丝没有鱼
 * @Date         : 2021-09-20 12:55:54
 * @LastEditors  : 鱼香肉丝没有鱼
 * @LastEditTime : 2021-11-24 01:29:41
 ******************************************/

// 基数排序
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;

//得到数组中的最大值
int getMax(int* arr, int n)
{
    int i, max;
    max = arr[0];
    for(i = 1; i < n; i++) {
        if(arr[i] > max)
            max = arr[i];
    }
    return max;
}

/*
 * 对数组按照"某个位数"进行排序(桶排序)
 *
 * 参数说明:
 *     arr -- 数组
 *     n -- 数组长度
 *     exp -- 指数。对数组a按照该指数进行排序。
 *
 * 例如,对于数组a={50, 3, 542, 745, 2014, 154, 63, 616};
 *    (01) 当exp=1表示按照"个位"对数组a进行排序
 *    (02) 当exp=10表示按照"十位"对数组a进行排序
 *    (03) 当exp=100表示按照"百位"对数组a进行排序
 *    ...
 */
void countSort(int* arr, int n, int exp)
{
    int* output = NULL;  // 存储"被排序数据"的临时数组
    int* num = NULL;  //保存每一个元素的exp位的数字,也就是我们现在面对的那一位
    output = new int[n];
    num = new int[n];
    int i, buckets[10] = {0};

    for(i = 0; i < n; i++)
        num[i] = (arr[i] / exp) % 10;  //取出对应的数字,避免后面重复的计算

    // 将数据出现的次数存储在buckets[]中
    for(i = 0; i < n; i++)
        buckets[num[i]]++;

    // 更改buckets[i]。目的是让更改后的buckets[i]的值,
    // 是该数据在output[]中的位置,即下标。小的在前,大的在后
    for(i = 1; i < 10; i++)
        buckets[i] += buckets[i - 1];

    // 将数据存储到临时数组output[]中
    for(i = n - 1; i >= 0; i--) {
        output[buckets[num[i]] - 1] = arr[i];
        buckets[num[i]]--;
    }
    // 将排序好的数据赋值给a[]
    for(i = 0; i < n; i++)
        arr[i] = output[i];

    delete[] output;
    delete[] num;
}

void radixSort(int* arr, int n)
{
    int exp;  // 指数。当对数组按个位进行排序时,exp=1;按十位进行排序时,exp=10;...
    int max = getMax(arr, n);  // 数组a中的最大值

    // 从个位开始,对数组a按"指数"进行排序
    for(exp = 1; max / exp > 0; exp *= 10)
        countSort(arr, n, exp);
}

int main(int argc, char* argv[])
{
    int n = 12;
    int num[n] = {23, 45, 17, 11, 13, 89, 72, 26, 3, 17, 11, 13};
    // int len  =sizeof(num)/sizeof(num[0])

    radixSort(num, n);
    cout << "排序后的数组为:";
    for(register int i = 0; i < n; i++)
        cout << num[i] << " ";
    cout << endl;
    return 0;
}

// 排序后的数组为:
// 3 11 11 13 13 17 17 23 26 45 72 89

summary

  1. 时间复杂度为Θ(d(n+k)),这种排序基于我们之前将的计数排序,其中n表示待排序列的规模,d表示待排序列的最大位数,k表示每一位数的范围,这也是一种时间换空间的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值