堆排序

假如有 14 个数分别是 99、5、36、7、22、17、46、12、2、19、25、28、1 和 92。现在我们需要删除其中最小的数,并增加一个新数 23,再次求这 14 个数中最小的一个数。
首先我们先把这个 14 个数按照最小堆的要求(就是所有父结点都比子结点要小)放入一棵完全二叉树,就像下面这棵树一样。
在这里插入图片描述
很显然最小的数就在堆顶,假设存储这个堆的数组叫做h的话,最小数就是 h[ 1]。接下来,我们将堆顶的数删除,并将新增加的数 23 放到堆顶。显然加了新数后已经不符合最小堆的特性,我们需要将新增加的数调整到合适的位置。那如何调整呢?
在这里插入图片描述

向下调整!我们需要将这个数与它的两个儿子 2 和 5 比较,并选择较小一个与它交换,交换之后如下。
在这里插入图片描述
我们发现此时还是不符合最小堆的特性,因此还需要继续向下调整。于是继续将 23 与它的两个儿子 12 和7比较,并选择较小一个交换,交换之后如下。
| 在这里插入图片描述

到此,还是不符合最小堆的特性,仍需要继续向下调整直到符合最小堆的特性为止。
在这里插入图片描述
我们发现现在已经符合最小堆的特性了。综上所述,当新增加一个数被放置到堆顶时,如果此时不符合最小堆的特性,则将需要将这个数向下调整,直到找到合适的位置为止,使其重新符合最小堆的特性。
在这里插入图片描述
堆排序方法一:从小到大排序,先建立最小堆,然后每次删除顶部元素并将顶部元素输出或者放入一个新的数组中,直到堆为空为止。

#include<iostream>
using namespace std;
int n;
int h[101];
//建立最小堆 
void siftdown(int i)
{
	int t;		//存储较小的结点的编号 
	int flag=0;		//标记是否需要调整顺序 
	//判断是否存在左孩子以及是否需要调整 
	while(i*2<=n && flag==0)
	{
		//如果父结点大于左孩子,则交换 
		if(h[i]>h[2*i])
		{
			t=2*i;
		}
		else
			t=i;
		//判断是否存在右孩子	
		if(i*2+1<=n)
		{
			//如果此时的父结点大于右孩子,则交换 
			if(h[t]>h[2*i+1])
			{
				t=2*i+1;
			}
		}
		
		if(t!=i)
		{
			//注意调用swap函数传入的参数 
			swap(h[t],h[i]);
			i=t;		// 更新i为刚才与它交换的孩子结点的编号 
		}
		else
		{
			flag=1;		//flag=1说明不需要调整序列,跳出循环 
		}
	}
	return;
}

//创建堆 
void creat()
{	
	for(int i=n/2;i>=1;i--)
	{
		siftdown(i);
	}
	return;
}

//去除最小堆的根节点,即输出最小的数 
int deletemin()
{
	int t;
	t=h[1];
	h[1]=h[n];
	n--;
	siftdown(1);
	return t;	
}

int main()
{
	int num;
	cin>>num;
	for(int i=1;i<=num;i++)
	{
		cin>>h[i];
	}
	n=num;
	creat();
	for(int i=1;i<=num;i++)
	{
		cout<<deletemin()<<" ";
	}
	return 0;	
}

堆排序方法二:从小到大排序,建立最大堆,在最大堆建好后,最大元素在h[1],因为是从小到大排序,所以将h[1]与h[n]交换,此时h[n]为最大的元素。交换后需要将h[1]向下调整保持堆的特性。反复执行,直到堆的大小为1.

#include<iostream>
using namespace std;
int n;
int h[101];
//建立最大堆 
void siftdown(int i)
{
	int t;
	int flag=0;		//标记是否需要调整 
	while(i*2<=n && flag==0)
	{
		if(h[i]<h[2*i])
		{
			t=2*i;
		}
		else
			t=i;
			
		if(i*2+1<=n)
		{
			if(h[t]<h[2*i+1])
			{
				t=2*i+1;
			}
		}
		
		if(t!=i)
		{
			//注意调用swap函数传入的参数 
			swap(h[t],h[i]);
			i=t;
		}
		else
		{
			flag=1;
		}
	}
	return;
}
//堆排序(注意使用此方法输出递增序列,必须是建立最大堆) 
void heapsort()
{
	while(n>1)
	{
		swap(h[1],h[n]);
		n--;
		siftdown(1);
	}
	return;
}

void creat()
{	
	for(int i=n/2;i>=1;i--)
	{
		siftdown(i);
	}
	return;
}

int main()
{
	int num;
	cin>>num;
	for(int i=1;i<=num;i++)
	{
		cin>>h[i];
	}
	n=num;
	creat();
	heapsort();
	for(int i=1;i<=num;i++)
	{
		cout<<h[i]<<" ";
	}
	
	return 0;	
}

从小到大进行排序在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值