7.堆排序

算法思想

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

1.将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
2.将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
3.由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
在这里插入图片描述

代码实现

C++

#include<iostream>

using namespace std;

void MySwap(int* tree, int i, int max)
{
	int temp = tree[i];
	tree[i] = tree[max];
	tree[max] = temp;
}

//对一个结点做heapify
void heapify(int* tree, int n, int i)
{
	if (i >= n)
	{
		return;
	}
	int c1 = 2 * i + 1;  //堆中第i个结点的父结点为 (i - 1) / 2,子结点为2i + 1   2i + 2
	int c2 = 2 * i + 2;
	int max = i;

	if (c1 < n && tree[c1] > tree[max])
	{
		max = c1;
	}
	if (c2 < n && tree[c2] > tree[max])
	{
		max = c2;
	}
	if (i != max)
	{
		MySwap(tree, i, max);
		heapify(tree, n, max);
	}
}

void build_heap(int* tree, int n)
{
	int last_node = n - 1;
	int parent = (last_node - 1) / 2;
	
	for (int i = parent; i >= 0; i--)
	{
		heapify(tree, n, i);
	}
}

void HeapSort(int* tree, int n)
{
	build_heap(tree, n);
	for (int i = n - 1; i >= 0; --i)
	{
		MySwap(tree, i, 0);
		heapify(tree, i, 0);  // 因为根结点的两个子树都是大根堆,所以对根结点做heapify可以生成一个大根堆
	}

}

int main()
{
	//int tree[] = { 4, 10, 3, 5, 1, 2 };
	int tree[] = { 1, 10, 5, 20, 3, 6};
	int len = sizeof(tree) / sizeof(tree[0]);
	HeapSort(tree, len);
	 
	for (int i = 0; i < len; ++i)
	{
		cout << tree[i] << endl;
	}
}

参考:https://www.bilibili.com/video/BV1Eb41147dK?from=search&seid=15036310208852845399

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值