算法思想
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
算法描述
1.将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
2.将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
3.由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
代码实现
C++
#include<iostream>
using namespace std;
void MySwap(int* tree, int i, int max)
{
int temp = tree[i];
tree[i] = tree[max];
tree[max] = temp;
}
//对一个结点做heapify
void heapify(int* tree, int n, int i)
{
if (i >= n)
{
return;
}
int c1 = 2 * i + 1; //堆中第i个结点的父结点为 (i - 1) / 2,子结点为2i + 1 2i + 2
int c2 = 2 * i + 2;
int max = i;
if (c1 < n && tree[c1] > tree[max])
{
max = c1;
}
if (c2 < n && tree[c2] > tree[max])
{
max = c2;
}
if (i != max)
{
MySwap(tree, i, max);
heapify(tree, n, max);
}
}
void build_heap(int* tree, int n)
{
int last_node = n - 1;
int parent = (last_node - 1) / 2;
for (int i = parent; i >= 0; i--)
{
heapify(tree, n, i);
}
}
void HeapSort(int* tree, int n)
{
build_heap(tree, n);
for (int i = n - 1; i >= 0; --i)
{
MySwap(tree, i, 0);
heapify(tree, i, 0); // 因为根结点的两个子树都是大根堆,所以对根结点做heapify可以生成一个大根堆
}
}
int main()
{
//int tree[] = { 4, 10, 3, 5, 1, 2 };
int tree[] = { 1, 10, 5, 20, 3, 6};
int len = sizeof(tree) / sizeof(tree[0]);
HeapSort(tree, len);
for (int i = 0; i < len; ++i)
{
cout << tree[i] << endl;
}
}
参考:https://www.bilibili.com/video/BV1Eb41147dK?from=search&seid=15036310208852845399