机器学习
机器学习相关知识
Harry嗷
礼貌提问才会礼貌回答,伸手党勿扰!仅讨论知识,不帮人调bug哈。
展开
-
[机器学习] focal loss:解决样本不平衡的一种通用方案
文章目录focal loss 提出的场景和针对的问题focal loss 提出的场景:目标检测focal loss 针对的问题:类别不平衡如何处理目标检测下的类别不平衡如何理解目标检测场景下的样本和类别two-stageone-stagefocal loss的算法focal loss的思想focal loss的局限假设的局限在这里插入图片描述适用场景的局限focal loss用于图像分类foca...原创 2020-03-08 18:41:03 · 4934 阅读 · 9 评论 -
[机器学习] 概念解析:从经验风险、结构风险到代价函数、损失函数、目标函数
文章目录经验风险和结构风险经验风险结构风险代价函数、损失函数、目标函数的定义损失函数和代价函数目标函数经验风险和结构风险借用 Andrew Ng Machine Learning 公开课视频一张图,举个例子:在上式中,记Size为XXX,Price为YYY,三种拟合的函数分别为f1(X)f_1(X)f1(X)、f2(X)f_2(X)f2(X)、f3(X)f_3(X)f3(X)。经验...原创 2020-03-05 23:06:47 · 752 阅读 · 0 评论 -
[机器学习] 机器学习中所说的“线性模型”是个什么东西?
[机器学习] 机器学习中所说的“线性模型”是个什么东西?线性是对谁而言?线性模型中的线性,并不指对输入变量的线性, 而是指对参数空间的线性。也就说对于输入来说, 完全可以对先对其进行非线性变换, 再进行线性组合。从这个角度来说, 线性模型完全具有描述非线性的能力。举一个简单的例子:y=wx+by=wx+by=wx+b 是线性模型,没问题。y=w1x+w2x2+w3x3+by=w_1x+...原创 2020-03-05 14:52:10 · 2834 阅读 · 0 评论 -
[深度学习] 池化层函数及其逆过程函数
class torch.nn.MaxPool1d()class torch.nn.MaxPool2d()class torch.nn.MaxPool3d()class torch.nn.AvgPool1d()class torch.nn.AvgPool3d()class torch.nn.AvgPool3d()原创 2019-06-27 19:10:54 · 1376 阅读 · 0 评论 -
[机器学习] 混淆矩阵和kappa系数
两篇非常非常优秀的博客4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)Kappa系数转载 2019-08-13 17:13:09 · 4505 阅读 · 0 评论 -
[深度学习] 神经网络中的 batch 和 epoch
神经网络中的 batch 和 epoch 的详细解释原创 2019-06-29 12:54:42 · 4037 阅读 · 1 评论 -
[深度学习] 深度学习常见概念
1. 卷积卷积过程是由一个带有参数的矩阵(称为滤波器),按一定的步长扫过输入矩阵,得到降维的输出矩阵。(如何计算输出矩阵的维度2. 池化原创 2019-06-24 20:20:17 · 2206 阅读 · 0 评论 -
[机器学习] 训练过程中的train,val,test的区别
转自:Caffe训练过程中的train,val,test的区别。训练过程中的train,val,test的区别val是validation的简称。training dataset和validation dataset都是在训练的时候起作用。而因为validation的数据集和training没有交集,所以这部分数据对最终训练出的模型没有贡献。validation的主要作用是来验证是否过拟...转载 2019-09-02 22:33:23 · 4528 阅读 · 0 评论