文章目录
- 项目简介
- 项目各模块和函数的解析
- utils.py
-
-
- get_device(ordinal)
- open_file(dataset)
- convert_to_color_()
- convert_from_color_()
- display_predictions()
- display_dataset()
- explore_spectrums()
- plot_spectrums()
- build_dataset()
- get_random_pos()
- sliding_window()
- count_sliding_window()
- grouper()
- metrics()
- show_results()
- sample_gt()
- compute_imf_weights()
- camel_to_snake()
-
- module.py
- model.py
- inference.py
- datasets.py
GitHub链接: Hyperspectral-Classification Pytorch。
项目简介
项目的作者是Xidian university,是基于PyTorch的高光谱图像地物目标的分类程序。该项目兼容Python 2.7和Python 3.5+,基于PyTorch深度学习和GPU计算框架,并使用Visdom可视化服务器。
预定义的公开的数据集有:
- 帕维亚大学
- 帕维亚中心
- 肯尼迪航天中心
- 印度松树
- 博茨瓦纳
用户也可添加自定义的数据集,示例是“数据融合大赛2018的高光谱数据集”DFC2018_HSI。开发人员应该为CUSTOM_DATASETS_CONFIG变量添加一个新条目,并为其用例定义特定的数据加载器。
该工具实现了scikit-learn库中的几个SVM变体以及PyTorch中实现的许多最先进的深度网络:
- SVM(带网格搜索的线性,RBF和多核)
- SGD(使用随机梯度下降的线性SVM进行快速优化)
基线神经网络(4个完全连接的层,有丢失)