1、作用
ARIMA模型的全称叫做自回归移动平均模型,是统计模型中最常见的一种用来进行时间序列预测的模型。
2、输入输出描述
输入:特征序列为1个时间序列数据定量变量
输出:未来N天的预测值
3、学习网站
4、案例示例
案例:基于1985-2021年某杂志的销售量,预测某商品的未来五年的销售量。
5、案例数据
ARIMA案例数据
6、案例操作
Step1:新建分析;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;
step4:选择【时间序列分析(ARIMA)】;
step5:查看对应的数据数据格式,【时间序列分析(ARIMA)】要求输入1个时间序列数据定量变量。
step6:选择向后预测的期数。
step7:点击【开始分析】,完成全部操作。
7、输出结果分析
输出结果1:ADF检验表
<