如何用ARIMA模型做预测?

ARIMA模型是一种常用的时间序列预测模型,通过差分处理实现序列平稳性。本文介绍了ARIMA模型的作用、输入输出描述,提供了学习资源,并通过案例详细展示了在SPSSPRO平台上分析1985-2021年某杂志销售量的预测过程,包括数据上传、模型选择、参数确定和结果分析。最后,文章讨论了模型理论和建模步骤,以及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、作用

ARIMA模型的全称叫做自回归移动平均模型,是统计模型中最常见的一种用来进行时间序列预测的模型。

2、输入输出描述

输入:特征序列为1个时间序列数据定量变量
输出:未来N天的预测值

3、学习网站

SPSSPRO-免费专业的在线数据分析平台

4、案例示例

案例:基于1985-2021年某杂志的销售量,预测某商品的未来五年的销售量。

5、案例数据

ARIMA案例数据

6、案例操作

Step1:新建分析;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;

step4:选择【时间序列分析(ARIMA)】;
step5:查看对应的数据数据格式,【时间序列分析(ARIMA)】要求输入1个时间序列数据定量变量。
step6:选择向后预测的期数。
step7:点击【开始分析】,完成全部操作。

7、输出结果分析

输出结果1:ADF检验表

<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值