给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)
PS:巨方便简单上手,貌似现在是免费
官网:www.mpaidata.com mpai数据科学平台
插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,可不过已知数据点,只要求在某种意义
下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
常见的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、 Hermite 插值和三次样条插值。
拟合
拟合:拟合的实现分为MATLAB和excel实现。
MATLAB的实现就是polyfit函数:主要是多项式拟合。
更复杂的函数拟合,使用的是最小二乘法,或者其他方法。但是需要经验公式:
例如:用最小二乘法求一个形如的经验公式,使它与下表所示的数据拟合
matlab代码如下:
x=[19 25 31 38 44]';
y=[19.0 32.3 49.0 73.3 97.8]';
r=[ones(5,1),x.^2];
ab =r\y
x0=19:0.1:44
y0=ab(1)+ab(2)*x0.^2;
plot(x,y,'o',x0,y0,'r')
此代码比较简单,大家自己看书就能立刻看明白。
关于拟合:拟合可以用excel,也可以用MATLAB,关于excel的用法。大家自己探索,提示:添加趋势线。
关于matlab,需要了解一些函数:
Polyfit polyval 其余参考MATLAB汇总中的MATLAB常用函数参考。
Polyfit是多项式拟合: