数学建模--插值和拟合

本文介绍了数值分析中的插值和拟合方法,以MATLAB为例,展示了如何在一维和二维情况下进行插值和拟合。通过对给定离散点的处理,探讨了不同插值和拟合方式的优劣,并提供了相应的MATLAB代码及图形结果,包括一维插值求解特定点值、三维曲面插值找最高点以及二维插值的图形绘制。
摘要由CSDN通过智能技术生成
常见的数值分析方法–插值、拟合、逼近。
  • 插值:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。图像处理中用来填充图像变换时像素之间的空隙。
  • 拟合:拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。(曲线不必经过全部给定的离散点)。
一维插值和拟合
1、已知离散点x = [0.0 0.1 0.195 0.3 0.401 0.5],y = [0.39849 0.39695 0.39142 0.38138 0.36812 0.35206],利用插值和拟合求x = 0.25处的值,观察各种插值和拟合方法的优劣,并对拟合作出拟合曲线。

matlab程序:

clc;
clear all;
close all;
%已知数据
x = [0.0 0.1 0.195 0.3 0.401 0.5];
y = [0.39849 0.39695 0.39142 0.38138 0.36812 0.35206];
figure;
%已知数据折线图
plot(x, y);
hold on;
%已知数据散点图
scatter(x, y, '*');
xlabel('x');
ylabel('y');
title('原始数据及一维插值');
%线性插值
T1 = interp1(x, y, 0.25, 'linear')
%最邻近插值
T2 = interp1(x, y, 0.25, 'nearest'
  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值