自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 利用docker构建pytorch-gpu环境

安装docker在ubuntu安装docker的教程,点击此处,按照其中的手动安装部分一步步来就好。拉取pytorch基础镜像docker pull pytorch/pytorch:1.5-cuda10.1-cudnn7-devel下载完毕之后,使用docker images查看镜像仓库中是否已经有了我们刚刚拉取的镜像当然你也可以pull nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04作为最最基本的一个镜像,然后再安装python,pytorch等等p

2020-11-25 11:17:38 7672 6

原创 PIL和cv2碎碎念

cv2.imwrite不能有中文路径,imread可以PIL读取图片时,当图片是sRGB模式表示的时候,读取的图片宽高会反掉,所以最好是用cv2.imread读取;当必须用PIL时,可以先用cv2读取再转换成PIL.Image格式,代码如下: img = cv2.imread(img_path) img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 等价于 # img = Image.open(img.

2020-11-03 22:52:12 182

原创 关于梯度消失与梯度爆炸

1.梯度消失梯度消失我们很容易理解,原因基本是激活函数的导数小于1,当网络比较深时,根据链式法则梯度回传,在传到靠近输入的网络部分时,此时的梯度变得十分小,导致这部分的网络权重更新缓慢。所以出现了Relu激活函数。Relu函数及其导数如下所示:当输入为正时,它的导数为1,此时梯度回传不会受链数的影响,从而解决了梯度消失问题。但它有个缺点,就是当输入为负时,他的导数为0,因此梯度为0,权重自然也就会更新,这种现象叫做神经元死亡,为了解决这个问题,出现了LeakyRelu、PRelu、RRelu以及最新

2020-10-22 19:43:31 284

原创 关于python中的全局变量

1.主函数if __name__ == '__main__':中定义的变量,默认为在外部定义的全局变量,即相当于在py文件开头定义的一些变量,其他子函数可以引用;2.如果子函数中,需要引用并修改全局变量的话,需要加global关键字,如:i = 0def closure(): global i i += 1 print(i)3.当全局变量是字典或者列表时,也可以不加global,程序会自动判断为你在修改全局变量,如:i = [1, 2, 3]def closure():

2020-10-16 19:26:00 678 1

原创 jupyter notebook的使用

jupyter notebook的使用1.首先安装了anaconda之后就会自动给你安装好jupyter notebook2.其次,输入这条命令:conda install nb_conda_kernels3.新建了一个虚拟环境之后,需要安装pip install jupyter,否则notebook中不会显示这个当前虚拟环境4.在anaconda的base环境下,输入jupyter notebook,即可打开notebook,安装过jupyter的虚拟环境会显示在右上角,当然也可以在已经编辑好的i

2020-10-12 22:47:29 159

原创 关于pycharm的碎碎念

关于pycharm的碎碎念1.python文件名中,带有&等符号,在debug的时候会正常进行,但不会显示执行到哪一行了2.pycharm有时会进入到一种pytest的执行模式中,进而产生一些奇怪的问题,我们一般都是使用正常模式进行debug或者run,这时,你只需要进行以下操作:选择Edit Configurations,然后,点击“+”,选择普通模式“Python”然后在右侧的Name和Script path中填入相应的python文件即可再把原来python test模式下的c

2020-10-09 21:30:46 713

原创 关于optimizer优化器与scheduler策略调整器

关于optimizer优化器与scheduler策略调整器optimizer优化器:optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, nesterov=args.nesterov, weight_decay=args.weight_decay)上面是SG

2020-10-07 01:48:28 1961

原创 c++调用pytorch训练出来的模型

方法一:利用pytorch的c++版本的API:libtorch方法二:利用opencv的readNetFromTorch(),导入的模型必须是 torch.save() 方法保存的文件。且opencv此函数只能读取序列化 nn.Module 对象,例如:nn.Sequentialnn.Parallelnn.Concatnn.Linearnn.SpatialConvolutionnn.spatialMaxPooling, nn.SpatialAveragePoolingnn.ReLU, nn

2020-07-24 10:15:59 2109

原创 vs下配置opencv

vs下配置opencvvs下面配置opencv一共有4个地方需要修改release版本:1.VC++ Directories→include Directories,添加D:\opencv\opencv\build\include D:\opencv\opencv\build\include\opencv2;2.VC++ Directories→Library Directories,添加D:\opencv\opencv\build\x64\vc14\lib3.Linker→General→

2020-07-23 22:26:57 146

原创 ubuntu18.04下的mmdetection安装

ubuntu18.04下的mmdetection安装1.首先下载anaconda安装包 Anaconda3-2020.02-Linux-x86_64.sh,输入以下命令:sh Anaconda3-2020.02-Linux-x86_64.sh2.sudo gedit ~/.bashrc看看是否添加了anaconda3/bin的path3.安装显卡驱动,一种方法是打开设置中的"软件和更新"部分,找到“附加驱动”,安装推荐的驱动,最后点击应用我个人不建议这样,建议自己安装:sudo apt insta

2020-05-11 23:52:04 794 1

原创 faster-rcnn源码深刻理解!!!

faster-rcnn源码深刻理解!!!网上的一些讲解都很模糊,我自己看了3天源码,终于自己悟出了一些东西。训练的faster-rcnn框架:测试的faster-rcnn框架:Frcnn框架图:大概类似于测试框架,其实训练和测试的区别就在于是否需要根据ground_truth计算一下loss...

2020-05-07 02:00:44 188

原创 归并排序!!!c++

void merge(vector<int> &arr, int low, int mid, int high) { //新建一个数组,暂时用于存储排好序的arr int* tmp = new int[high-low+1]; //初始化ll和rr,分别为左右两边数组的起始节点下标 int ll = low, rr = mid + 1, k = 0; //遍历进行比...

2020-04-01 14:48:46 123 1

原创 插入排序代码(c++)

void insertsort(vector<int> &arr) { for (int i = 1; i < arr.size(); i++) { for (int j = i - 1; j >= 0; j--) { if (arr[j] > arr[j + 1]) swap(arr[j], arr[j + 1]); } }}

2020-03-31 22:30:58 192

原创 堆排序代码!!!(c++:调用STL、自己实现)

/*//利用STL库函数,引入了额外空间void heapsort(vector<int> &arr) { priority_queue<int> pq{ arr.begin(), arr.end() }; for (int i = arr.size() - 1; i >= 0; i--) { arr[i] = pq.top(); pq.po...

2020-03-31 19:34:54 336

原创 面试常考!!!快速排序代码

int partition(vector<int> &arr, int low, int high) { int tmp = arr[low]; while (low < high) { while (low < high && arr[high] >= tmp) high--; //当前数字<tmp了,将...

2020-03-31 15:28:37 200 1

原创 c++中指针与引用作为函数参数的区别

首先,函数参数的普通传递就不说了,这个很简单,传过来之后只是一个变量的复制,不会改变原变量的;其次,引用传递也很明确,引用传参是会改变参数的值的;问题就在指针传递,分为以下几种:1.指针作为函数参数,如果是单纯针对指针进行操作,它就相当于普通传递,不会改变原指针;但如果对指针进行引用传递,欸,它就可以改变原指针了,如下图2.指针作为函数参数,如果是针对指针所指向的内容进行操作,是...

2020-03-11 18:17:17 907

原创 利用git进行代码管理

首先在远端github上新建一个仓库,接下来的操作都是在本地上进行:1.进入要上传的项目文件夹,打开git bash2.输入git init,会在本地生成一个.git文件,将此文件夹变为git可以管理的工作区3.输入git add .,将所有文件添加到缓存区4.输入git commit -m '注释说明’,提交文件到仓库,最好加一下注释说明5.输入git remote add orig...

2020-01-10 17:27:52 328

原创 关于cv.waitKey

cv.waitKey()相当于cv.waitKey(0),即当前窗口持续显示,直至按下键盘或者点击窗口关闭。可将其赋予一个对象,如key = cv.waitKey(),若通过键盘关闭,则返回键盘的ASCII值(Esc对应的ASCII值为27);若通过鼠标点击窗口关闭按钮关闭,则返回-1。cv.waitKey(int型数a)当前窗口持续显示a毫秒,同样可将其赋予一个对象,如key = cv...

2019-06-23 13:57:29 3080

转载 分类,聚类及其回归的区别

from:https://blog.csdn.net/u011630575/article/details/78637517以前偶然找到过下图,该图对分类,聚类及其回归表达的很清晰。由上图我们可以看到,机器学习分为四大块,分别是 classifica...

2019-06-23 11:31:03 925

原创 关于各种CNN架构(笔记)

googlenet:由11卷积,33卷积,55卷积,33最大池化四个并行通道运算结果进行融合,提取图像不同尺度的信息。如果说VGG是以深度取胜,那么GoogLeNet可以说是以宽度取胜;mobilenets:一个depthwise convolution,专注于该通道内的空间信息,一个pointwise convolution,专注于跨通道的信息融合,两者共同努力,然后强大;resnet:利用...

2019-05-02 21:48:47 169

原创 关于卷积参数

stride表示步长pad表示填充,如图:group表示分组,主要当年GPU不是很强大,分成多组分别卷积,叫做群卷积。

2019-05-02 16:26:02 276

转载 DNN CNN RNN LSTM 的区别

神经网络的来源      神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),包含有输入层、输出层和一个隐藏层。输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果。但早期的单层感知机存在一个严重的问题——它对稍微复杂一些的函数都无能为力(如异或操作)。直到上世纪八十年代才被Hition、Rumelhart等人发...

2019-05-02 15:10:47 2592 2

翻译 关于batchsize iteration epoch

batchsize:中文翻译为批大小(批尺寸)。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;iteration:中文翻译为迭代,1个iteration等于使用batchsize个样本训练一次;一个迭代 = 一个正向通过+一个反向通过;epoch:迭代次数,1个epoch等于使用训练集中的全部样本训练一次;一个epoch = 所有训练样本的一个正向传递和...

2019-05-02 13:19:01 231

翻译 关于全连接神经网络和卷积神经网络

文章目录区别卷积神经网络的优点关于卷积神经网络的filter的理解区别在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连。卷积神经网络的优点用全连接神经网络处理图像的最大问题就是:全连接层的参数太多,对于MNIST数据,每一张图片的大小是28281,其中2828代表的是图片的...

2019-04-28 19:58:19 1890

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除