机器学习笔记——利用sklearn中KNN算法实现鸢尾花分类

本文详细介绍了如何使用sklearn库中的KNN算法对鸢尾花数据集进行分类。通过数据预处理、特征标准化、模型训练与验证,结合交叉验证和网格搜索优化超参数,得出最佳的n_neighbors值为10,以此提升模型性能。
摘要由CSDN通过智能技术生成

sklearn KNN算法实现鸢尾花分类

  • 编译环境
  • python 3.6
  • 使用到的库
  • sklearn

简介

本文利用sklearn中自带的数据集(鸢尾花数据集),并通过KNN算法实现了对鸢尾花的分类。
KNN算法核心思想:如果一个样本在特征空间中的K个最相似(最近临)的样本中大多数属于某个类别,则该样本也属于这个类别。

sklearn库介绍

自2007年发布以来,scikit-learn已经成为最给力的Python机器学习库(library)了。scikit-learn支持的机器学习算法包括分类,回归,降维和聚类。还有一些特征提取(extracting features)、数据处理(processing data)和模型评估(evaluating models)的模块。
安装:

pip install sklearn

鸢尾花数据集介绍

sklearn.datasets.load_iris() # 加载并返回鸢尾花数据集
    </tr>
    <tr>
        <td>特征</td>
        <td>4</td>
        
    </tr>
    <tr>
        <td>样本数量</td>
        <td>150</td>
        
    </tr>
    <tr>
        <td>每个类别数量</td>
        <td>50</td>
        
    </tr>
</tbody>
名称 数量
类别 3
### KNN算法距离计算公式 两个样本的距离也就是欧式距离,比如:样本a(a1,a2,a3)和样本b(b1,b2,b3)的距离 ![欧式距离公式](https://img-blog.csdn.net/20180905110620309?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQxNjg5NjIw/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) ### sklearn KNN算法API
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
  • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

获取鸢尾花数据

from sklearn.datasets import load_iris

def get_iris_data(self):
    iris = load_iris()
    iris_data = iris.data # 鸢尾花特征值(4个)
    iris_target = iris.target # 鸢尾花目标值(类别)

    return iris_data, iris_target
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值