人工智能
pure water
这个作者很懒,什么都没留下…
展开
-
关于反向传播我听到最好的解释
首先,chain rule了解一下:C是y_和y的距离(也可以理解为损失函数)C对w求偏微分,有两部分,一部分是forward ,一部分是backward.如何计算forward pass,非常简单,就是input.举个例子:接下来看backward pass:将上图与下图对比,就可以看出backward的含义了,如果我们最最后面开始往前算,一步一步,就相当于反向传播了。...原创 2020-06-23 17:10:12 · 391 阅读 · 0 评论 -
可解释学习笔记(李宏毅老师课程)
为什么要解释?因为我们喜欢给不同的决策找一个理由啊,不然我们就很难接受这个决策。local explanation:为什么你认为这是一只猫?global explanation:你心里的一只猫是什么样子的?决策树是一个好解释的模型,比如说你认为这是一只鸟,是因为它满足前两个条件。如果你把一个灰色的小方块,随机遮住这个图片的一些部分,当遮住以后这个图片无法识别了以后,说明这个部分是这...原创 2020-04-14 17:32:31 · 435 阅读 · 0 评论 -
卷积可视化代码初级
在学卷积可视化的时候,遇到了一些问题,记录一下。首先推荐一个:https://blog.csdn.net/weixin_40500230/article/details/84935287人们经常说深度学习模型是“黑匣子”,学习表示很难以人类可读的形式提取和呈现。尽管对于某些类型的深度学习模型来说部分是正确的,但对于卷积网络绝对不是正确的。卷积网络学习的表示形式非常适合可视化,这在很大程度上是...原创 2020-03-28 17:33:48 · 443 阅读 · 0 评论