dockerhub网页无法访问,如何查看镜像的问题 简单记录一下以前好像是可以访问的,我最近想拉个镜像,怎么都登陆不上dockerhubhttps://hub.docker.com登不上看不到镜像我怎么拉啊,没办法。但是我的docker可以直接login的.我翻了一下书。docker search这个命令可以解决docker search --no-trunc就可以了我选了个stars最多的docker pull 了。就是有个小问题,这样看不到每个镜像有多大。
关于反向传播我听到最好的解释 首先,chain rule了解一下:C是y_和y的距离(也可以理解为损失函数)C对w求偏微分,有两部分,一部分是forward ,一部分是backward.如何计算forward pass,非常简单,就是input.举个例子:接下来看backward pass:将上图与下图对比,就可以看出backward的含义了,如果我们最最后面开始往前算,一步一步,就相当于反向传播了。...
关于MAML的那些事 多余的元学习废话也不多说,直接上干货:算法:关于学习率:两个学习率a、b,要知道,为了一步优化探测task最优参数的位置(inner loop),我们必须使用稍微大点的学习率a,这叫一步到位。而优化你真正模型参数的学习率应该是很小的(outer loop),因为他必须在参数空间中经过漫长的迭代,慢慢找到最合适的位置。关于损失函数:分类交叉熵,回归MSE关于1阶和2阶的MAML:首先,Nway K shot ,support set 和query set的知识就不介绍了。看这个图,训练的过
Reptile原理以及代码详解 论文:2018-On First-Order Meta-Learning Algorithms算法简介MAML,FOMAML,reptile这些都是关于fewshot任务中参数初始化的问题,这些算法都是寻找一个模型合理的初始化参数,使模型能够较快的适应小样本数据,在新任务上也能有较好的表现。MAML在论文中是二阶的,但是作者通过简化,推出了first-order MAML,(FOMAML),这个算法是一阶的,更方便实施。reptile也是一个一阶的基于梯度的元学习算法。伪代码步骤:1.初始化
元学习(3)--李宏毅老师课程学习笔记 有没有什么模型,它可以直接输train data 和test data,输出是不是,全部封装好。其实我们手机上的人脸识别就是这样的。siamese network --孪生网络,两个网络的参数可以共享也可以不共享。matching network 认为图之间是有关系的,图的顺序对调结果就不一样了,所以就提出了prototyptical network。relation network 是再用一个网络去计算测试图和训练图得到的embedding。对于小样本学习,我们也可以让机器去幻想,
元学习gradient descent as LSTM(2)--李宏毅老师课程学习笔记 我们发现meta learning中的结构与RNN比较相似,具体看下面两篇论文是讲这个的。RNN是用同一个单元去处理很长的句子,因为每次只吃一个单词。现在基本用LSTM,通过结构发现Ct的特殊,同时由于它改变较慢,因此LSTM能够储存较长之间之前的词。复习一下LSTM:这个图和上面的图进行对比,是LSTM的简化版。如果把sita t-1 的loss用来更新zi,那么可以多样地调整学习率。实际的时候,一个LSTM用在所有的参数中。以前的方法都会用以前的梯度,那我们是不是也能这样。
元学习MAML reptile(1)-李宏毅老师课程学习笔记 meta learn =learn to learn我们希望机器学习怎样去学习这件事情,就是学会语音辨识、图像辨识以后,它学会了如何去学习学习这件事情,而不是停留在语音和图像的任务上。
pytorch学习笔记(一)-----基础使用篇 这是学习pytorch的学习笔记,个人记录篇pytorch是一个基于Python的科学计算包,目标用户有两类为了使用GPU来替代numpy一个深度学习研究平台:提供最大的灵活性和速度张量Tensor类似于numpy,但是可以使用GPU来进行相关的计算。创建数组:x = torch.Tensor(5, 3) 维度x = torch.zeros(5, 3, dtype=torch.long) 维度 类型x = torch.tensor([5.5, 3]) 内容x = x.new_ones(
可解释性论文阅读(三)--Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization 中间隔了一天,但是我也有看英语论文的。而且我发现自己有变化了,并且我很喜欢这种变化。以前我看论文总是喜欢扫看,但是英语不行,所以看英语论文的时候,我感觉自己变得沉静了。还有一点,我不排斥英文论文了。遇到英文的文字,也很自然地开始读了起来。(此处插入一个女大学生欣慰的笑容~~)进入正文:Grad-CAM也是很经典的方法啦~不过我要改改笔记方法,写得好的原文我就在我论文里标记好了。这里只写自己的...
图像分割问题:数据增强之图像变换 在做图像分割的问题的时候,用了数据增强,代码分享如下:场景:一次性对两条路径的图片做相同的数据增强处理path1——原图路径,path2——掩膜图路径new_path1——增强后原图路径,new_path2——增强后掩膜图路径count是计数器,会自动保存在新增图片的名字里。#翻转和旋转图像def enhanceimage1(path1, path2, new_path1, new_p...
可解释性论文阅读(二)--- Visualizing and Understanding Convolutional Networks 继续努力,继续努力!!!第二天!!!今天也来读一篇经典的文章Visualizing and Understanding Convolutional NetworksAbstract背景都是网络效果好,但是不知道为什么。本文介绍了一种神奇的方法能够深入理解中间特征层的功能和分类器的操作。在诊断方面,这些可视化使我们能够在ImageNet分类基准上找到比Krizhevsky等人更好的模型架构。...
可解释论文阅读(一)---Understanding Neural Networks Through Deep Visualization 要学神经网络的可解释性了,学长扔给我一大批论文,还是英文的,积了好久,哎,不看不行啊。英语白痴看论文可真难~~所以我要立个小目标,我要看完10篇,目前就一天一篇吧~我要看的论文有这么多!!!Understanding Neural Networks Through Deep Visualization笔记开始啦~~~(咬牙开始读)文章结构是这样子的,第一章介绍了两种工具,第二章介绍了第一种方...
可解释学习笔记(李宏毅老师课程) 为什么要解释?因为我们喜欢给不同的决策找一个理由啊,不然我们就很难接受这个决策。local explanation:为什么你认为这是一只猫?global explanation:你心里的一只猫是什么样子的?决策树是一个好解释的模型,比如说你认为这是一只鸟,是因为它满足前两个条件。如果你把一个灰色的小方块,随机遮住这个图片的一些部分,当遮住以后这个图片无法识别了以后,说明这个部分是这...
卷积可视化代码初级 在学卷积可视化的时候,遇到了一些问题,记录一下。首先推荐一个:https://blog.csdn.net/weixin_40500230/article/details/84935287人们经常说深度学习模型是“黑匣子”,学习表示很难以人类可读的形式提取和呈现。尽管对于某些类型的深度学习模型来说部分是正确的,但对于卷积网络绝对不是正确的。卷积网络学习的表示形式非常适合可视化,这在很大程度上是...
我理解的tensorboard 我以前从来没有用过summary这个记录的events,后来发现他其实挺有用的。我以前都是自己把我想要的变量保存下来然后做一个列表,后来是在使用百度paddle的时候因为它封装的比较好,然后我又不想从中间去插,所以就用这个tensorboard去处理~~步骤:你写代码的时候,要把你要看得加入scalar到你的summary里面。然后呢你想要看的时候,用命令行cmdtensorboard --...
python and pip 电脑好像乱七八糟有很多的python,还有ipython.搞不懂!!有的有pip ,有的有conda,总之头大。后来总结了一个方法:官网下载pipcmd进入目录:python setup.py install注意这个时候在你的环境变量PATH中最优先的是哪个python,pip就装在哪个python里面。(这点很重要)然后你安装的时候,python -m pip install就可...
超实用网站 超实用网站:https://blog.csdn.net/qq_43901693/article/details/100606828?utm_source=distribute.pc_relevant.none-task