Vision Transformer【ViT】学习笔记

模型架构图

在这里插入图片描述

整体介绍

首先将图片切分成为9宫格,每一个小块为一个patch,再展平为1维向量,再经过一个线性层(MLP)投影成为我们规定的维
度(对应于Transformer里面的将token向量化的过程)。
由于图片切分之后分别输入到网络中,此时位置信息会被打乱,此时需要positional embedding对位置信息进行编码,再进行自注意力的计算。

在Encoder的最后,每一个token都对应一个输出,应该用哪一个作为输出分类呢?
借鉴bert,Extra learnable {class} embedding --> [class],即图中的第0位置的token,在encoder里面做自注意力计算的的时候,所有的token进行两两计算时,这个分类的token同样也会和所有的token进行交互,可以学习到图片所有的特征,此时用作图片分类是合理的。
[class] 输入 一个通用的 MLP Head,得到 Class,cross-entropy 损失函数训练模型。

一句话概括ViT的工作

ViT用标准的transformer结构,仅仅是将图片当作句子,patch当作单词进行处理,像论文题目An Image is worth 16 * 16 words,即一张图片都是很多个16*16的patch组成的,最后加一个class token + MLP (tanh acitvation)完成图片分类任务。

ViT 前向过程

输入图片 X: 224 * 224 * 3 (RGB, 3 channels)
patches 数 N: 224 ^ 2 / 16 ^ 2 = 14 ^ 2 = 196
每一个 patch 的维度:16 * 16 * 3 (RGB, 3 channels) = 768
Linear Projection 全连接层 E: 768( 不变,patch 计算而来 ) * D(embedding_dim) 768 或 更大【这是可以设置为我们想要的语义空间的维度】
图片 X * E = patches (196 patches 个数 * 768 每个 patch 的维度) * E ( 768 * D ) = 196 * D (768)

Q: 进入 transformer encoder 的序列长度?
196 * 768(图片对应的 tokens) 拼接 concatenate [class] token (1 * 768) = 197 * 768

Q: position embedding 怎么加 patch embedding?sum()
位置编码每行向量的维度是 1 * 768
相加 sum:
patch embedding(197 * 768) + position embedding ((1 CLS + 196 patches) * 768)= (197 * 768)

Transfomer encoder 输入输出维度保持一致,即D(768)。

ViT总结

【贡献】
首次将NLP里面的Transformer搬到CV,其主要模型架构和bert相同,都是只采用了Transformer的Encoder。它打破了NLP和CV的壁垒,真正在多个领域实现了统一模型,是一项奠基性的工作。原论文仅仅是解决了图像分类任务,目标检测,图像分割等任务依然可以通过Transformer完成,这给后人提供了研究方向。
【局限】
由于tokens之间是两两进行全局注意力的计算,所以复杂度是二次方,在图片较大的时候是不可接受的。ViT只有在大数据集上才能胜过ResNet,在小数据集上依然是ResNet领先,这归功于CNN天生的特征提取局部性和平移不变形等归纳配置(先验知识)。后续的Swin Transformer很好的解决了上述两点问题,因而成为目前【2022】最厉害的CV框架。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值