2018 ICPC SouthEastern European 【Fishermen】

题意:
给出n条鱼的坐标,m个渔夫都在x轴,给出m个渔夫的坐标,以及鱼竿的长度L,鱼到渔夫的距离是 a b s ( x 鱼 − x 渔 夫 ) + y 鱼 {abs(x_鱼 - x_{渔夫})+y_鱼} abs(xx)+y

思路:
找到每个鱼对应的能被捕到的范围,二分找到离范围最近的两个渔夫,用前缀和。

代码:


#include <bits/stdc++.h>
using namespace std;
#define memset(a,b) memset(a,b,sizeof(a))
#define llu  unsigned long long
#define inf 0x3f3f3f3f
const int maxn=1e5+10;

struct node{
   int x;
   int y;
}a[maxn*2];
struct nodd{
   int num,pos,num1;
   bool operator <(const nodd &A) const {
       return pos < A.pos;
   }
}b[maxn*2];
int sum[maxn*2];
int ans[maxn*2];



int main()
{
    int n,m,l;
    scanf("%d %d %d",&n,&m,&l);
    for(int i=1;i<=n;i++){
        scanf("%d %d",&a[i].x,&a[i].y);
    }
    for(int i=1;i<=m;i++)
        scanf("%d",&b[i].pos),b[i].num=i;
    sort(b+1,b+m+1);
    for(int i=1;i<=m;i++)
        b[i].num1=i;

    for(int i=1;i<=n;i++){
        if(l < a[i].y)
            continue;
        nodd tmp2;
        tmp2.pos=a[i].x+l-a[i].y;         //范围的右边界
        nodd tmp1;
        tmp1.pos=a[i].x-l+a[i].y;        //范围的左边界
        int x1=lower_bound(b+1,b+1+m,tmp1)-b;         //返回第一个大于等于的
        int x2=upper_bound(b+1,b+1+m,tmp2)-b;        //返回第一个大于的
        sum[x1]++;
        sum[x2]--;
    }
    for(int i=1;i<=m;i++)
        sum[i] +=sum[i-1],ans[b[i].num]=sum[i];

    for(int i=1;i<=m;i++){
        printf("%d\n",ans[i]);
    }
    return 0;
}




内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值