写一段代码,求出两个整数的最大公约数,要尽量优化算法的性能。
例如:12和6的公约数2与3中,3是最大公约数。
穷举法
package algorithmProblem;
public class greatestCommonDivisor {
public static int greatest(int a,int b){
int big = a>b? a:b;
int small = a<b? a:b;
if(big%small==0){
return small;
}
for (int i =small/2;i>1;i--){
//从较小整数的一半开始,试图
//找到一个合适的整数i,看看这个整数能否被a和b同时整除。
if(small%i==0&&big%i==0){
return i;
}
}
//1是任何数的公约数
return 1;
}
public static void main(String[] args) {
System.out.println(greatest(1000,1001));
}
}
存在的问题:如果求1000和1001的最大公约数,得循环(1000/2)-1次。效率低
辗转相除法法
辗转相除法, 又名欧几里得算法(Euclidean algorithm),该算法的目的是求出两个正整数的最大公约数
两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。
例如:25除以10商2余5,那么10和25的最大公约数,等同于10和5的最大公约数。
想到->递归法
流程
第一步
计算出a除以b的余数c,把问题转化成求b和c的最大公约数;
第二步
然后计算出b除以c的余数d,把问题转化成求c和d的最大公约数;再计算出c除以d的余数e,把
问题转化成求d和e的最大公约数……以此类推,
第三步
递归出口:
逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,直到两个数可以整除,或者其中一个数减小到1为止
JAVA实现
public static int greatest2(int a,int b){
int big = a>b? a:b;
int small = a<b? a:b;
if(big%small==0){
return small;
}
if(big==1){
return 1;
}
if(small==1){
return 1;
}
return greatest2(big%small,small);
}
存在的问题:当两个整数较大时,做a%b取模运算的性能会比较差
更相减损术
两个正整数a和b(a>b),它们的最大公约数等于a-b的差值c和较小数b的最大公约数
这样就避免的取模运算…
第一步
计算出a和b的差值c(假设a>b),把问题转化成求b和c的最大公约数;
第二步
然后计算出c和b的差值d(假设c>b),把问题转化成求b和d的最大公约数;再计算出b和d的差值e(假设b>d),把问题转化成求d和e的最大公约数……以此类推,逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,
第三步
递归出口:直到两个数可以相等为止,最大公约数就是最终相等的这两个数的值。
JAVA实现
public static int greatest3(int a,int b){
int big = a>b? a:b;
int small = a<b? a:b;
if(small==big){
return small;
}
if(big==1){
return 1;
}
if(small==1){
return 1;
}
return greatest3(big-small,small);
}
存在的问题:更相减损术依靠两数求差的方式来递归,运算次数肯定远大于辗转相除法的取模方式
更相减损术与移位相结合
把辗转相除法和更相减损术的优势结合起来,在更相减损术的基础上使用移位运算。
操作逻辑
当a和b均为偶数时,gcd(a,b) = 2×gcd(a/2, b/2) = 2×gcd(a>>1,b>>1)
当a为偶数,b为奇数时,gcd(a,b) = gcd(a/2,b) = gcd(a>>1,b)
当a为奇数,b为偶数时,gcd(a,b) = gcd(a,b/2) = gcd(a,b>>1)
当a和b均为奇数时,先利用更相减损术运算一次,gcd(a,b) = gcd(b,a-b),此
时a-b必然是偶数,然后又可以继续进行移位运算。
例子
计算10和25的最大公约数的步骤如下。
- 整数10通过移位,可以转换成求5和25的最大公约数。
- 利用更相减损术,计算出25-5=20,转换成求5和20的最大公约数。
- 整数20通过移位,可以转换成求5和10的最大公约数。
- 整数10通过移位,可以转换成求5和5的最大公约数。
- 利用更相减损术,因为两数相等,所以最大公约数是5。
JAVA实现
小Tips:判断奇数偶数:待判断的数字&1看是否为0
例如 12&1 等于0
11&1==1
移位运算:>>1相当于除2,>>2相当于除4
移位运算:<<1相当于乘2,<<2相当于乘4
/**
* 更相减损术结合移位相结合
*
* @param a
* @param b
* @return
*/
public static int greatest4(int a,int b){
//递归出口
if(a==b){
return a;
}
//都是偶数的情况
//gcd(a,b) = 2×gcd(a/2, b/2) = 2×gcd(a>>1,b>>1)
if((a&1)==0&&(b&1)==0){
return greatest4(a>>1,b>>1)<<1;
}else if((a&1)==0&&(b&1)!=0){
//当a为偶数,b为奇数时,gcd(a,b) = gcd(a/2,b) = gcd(a>>1,b)
return greatest4(a>>1,b);
}else if((a&1)!=0&&(b&1)==0){
// 当a为奇数,b为偶数时,gcd(a,b) = gcd(a,b/2) = gcd(a,b>>1)
return greatest4(a,b>>1);
}else {
// 当a和b均为奇数时,先利用更相减损术运算一次,gcd(a,b) = gcd(b,a-b),此
// 时a-b必然是偶数,然后又可以继续进行移位运算。
int big = a>b? a:b;
int small = a<b? a:b;
return greatest4(big-small,small);
}
}