数据结构---求最大公约数


写一段代码,求出两个整数的最大公约数,要尽量优化算法的性能。
例如:12和6的公约数2与3中,3是最大公约数。

穷举法

package algorithmProblem;

public class greatestCommonDivisor {
    public static int greatest(int a,int b){
        int big = a>b? a:b;
        int small = a<b? a:b;
        if(big%small==0){
            return small;
        }
        for (int i =small/2;i>1;i--){
            //从较小整数的一半开始,试图
            //找到一个合适的整数i,看看这个整数能否被a和b同时整除。
            if(small%i==0&&big%i==0){
                return i;
            }
        }
        //1是任何数的公约数
        return 1;
    }

    public static void main(String[] args) {
        System.out.println(greatest(1000,1001));
    }
}

存在的问题:如果求1000和1001的最大公约数,得循环(1000/2)-1次。效率低

辗转相除法法

辗转相除法, 又名欧几里得算法(Euclidean algorithm),该算法的目的是求出两个正整数的最大公约数

两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。

例如:25除以10商2余5,那么10和25的最大公约数,等同于10和5的最大公约数。

想到->递归法
流程

第一步

计算出a除以b的余数c,把问题转化成求b和c的最大公约数;

第二步

然后计算出b除以c的余数d,把问题转化成求c和d的最大公约数;再计算出c除以d的余数e,把
问题转化成求d和e的最大公约数……以此类推,

第三步

递归出口:
逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,直到两个数可以整除,或者其中一个数减小到1为止

JAVA实现

    public static int greatest2(int a,int b){
        int big = a>b? a:b;
        int small = a<b? a:b;
        if(big%small==0){
            return small;
        }
        if(big==1){
            return 1;
        }
        if(small==1){
            return 1;
        }
        return greatest2(big%small,small);

    }

存在的问题:当两个整数较大时,做a%b取模运算的性能会比较差

更相减损术

两个正整数a和b(a>b),它们的最大公约数等于a-b的差值c和较小数b的最大公约数

这样就避免的取模运算…

第一步

计算出a和b的差值c(假设a>b),把问题转化成求b和c的最大公约数;

第二步

然后计算出c和b的差值d(假设c>b),把问题转化成求b和d的最大公约数;再计算出b和d的差值e(假设b>d),把问题转化成求d和e的最大公约数……以此类推,逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,

第三步

递归出口:直到两个数可以相等为止,最大公约数就是最终相等的这两个数的值。

JAVA实现

    public static int greatest3(int a,int b){
        int big = a>b? a:b;
        int small = a<b? a:b;
        if(small==big){
            return small;
        }
        if(big==1){
            return 1;
        }
        if(small==1){
            return 1;
        }
        return greatest3(big-small,small);
    }

存在的问题:更相减损术依靠两数求差的方式来递归,运算次数肯定远大于辗转相除法的取模方式

更相减损术与移位相结合

把辗转相除法和更相减损术的优势结合起来,在更相减损术的基础上使用移位运算

操作逻辑

当a和b均为偶数时,gcd(a,b) = 2×gcd(a/2, b/2) = 2×gcd(a>>1,b>>1)
当a为偶数,b为奇数时,gcd(a,b) = gcd(a/2,b) = gcd(a>>1,b)
当a为奇数,b为偶数时,gcd(a,b) = gcd(a,b/2) = gcd(a,b>>1)
当a和b均为奇数时,先利用更相减损术运算一次,gcd(a,b) = gcd(b,a-b),此
时a-b必然是偶数,然后又可以继续进行移位运算。

例子

计算10和25的最大公约数的步骤如下。

  1. 整数10通过移位,可以转换成求5和25的最大公约数。
  2. 利用更相减损术,计算出25-5=20,转换成求5和20的最大公约数。
  3. 整数20通过移位,可以转换成求5和10的最大公约数。
  4. 整数10通过移位,可以转换成求5和5的最大公约数。
  5. 利用更相减损术,因为两数相等,所以最大公约数是5。

JAVA实现

小Tips:判断奇数偶数:待判断的数字&1看是否为0
例如 12&1 等于0
11&1==1
移位运算:>>1相当于除2,>>2相当于除4
移位运算:<<1相当于乘2,<<2相当于乘4

 /**
     * 更相减损术结合移位相结合
     *
     * @param a
     * @param b
     * @return
     */
    public static int greatest4(int a,int b){
        //递归出口
        if(a==b){
            return a;
        }

        //都是偶数的情况
        //gcd(a,b) = 2×gcd(a/2, b/2) = 2×gcd(a>>1,b>>1)
        if((a&1)==0&&(b&1)==0){
            return greatest4(a>>1,b>>1)<<1;
        }else if((a&1)==0&&(b&1)!=0){
            //当a为偶数,b为奇数时,gcd(a,b) = gcd(a/2,b) = gcd(a>>1,b)
            return greatest4(a>>1,b);
        }else if((a&1)!=0&&(b&1)==0){
//            当a为奇数,b为偶数时,gcd(a,b) = gcd(a,b/2) = gcd(a,b>>1)
            return greatest4(a,b>>1);
        }else {
//            当a和b均为奇数时,先利用更相减损术运算一次,gcd(a,b) = gcd(b,a-b),此
//            时a-b必然是偶数,然后又可以继续进行移位运算。
            int big = a>b? a:b;
            int small = a<b? a:b;
            return greatest4(big-small,small);
        }


    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值