朴素贝叶斯原理:
朴素贝叶斯是基于贝叶斯定理和特征条件独立假设分类方法。对于给定训练集,首先基于特征条件独立性的假设,学习输入/输出联合概率(计算出先验概率和条件概率,然后求出联合概率)。然后基于此模型,给定输入x,利用贝叶斯概率定理求出最大的后验概率作为输出y。
假设我们有训练数据集如下:

即有m个样本,每个样本有n个特征,特征输出有K个类型,定义为C1、C2、... CK。
于是,从样本中可以得出朴素贝叶斯的先验分布:

接着学习到条件概率分布:

然后根据贝叶斯公式就可以得到XY的联合分布:

朴素贝叶斯模型假设X的n个维度之间相互独立,则有:

本文详细介绍了三种机器学习模型:朴素贝叶斯,支持向量机(SVM)和潜在狄利克雷分配(LDA)。朴素贝叶斯基于特征条件独立假设进行分类,SVM寻求最大间隔的线性或非线性分类器,而LDA是一种文档主题生成模型,用于识别大规模文档集中的主题信息。
最低0.47元/天 解锁文章
3042

被折叠的 条评论
为什么被折叠?



