题目网址链接:
http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_4_B
Search - Binary Search
Time Limit : 1 sec, Memory Limit : 131072 KB
Search II
You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.
Input
In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers are given.
Output
Print C in a line.
Constraints
- Elements in S is sorted in ascending order
- n ≤ 100000
- q ≤ 50000
- 0 ≤ an element in S ≤ 109
- 0 ≤ an element in T ≤ 109
Sample Input 1
5 1 2 3 4 5 3 3 4 1
Sample Output 1
3
Sample Input 2
3 1 2 3 1 5
Sample Output 2
0
Sample Input 3
5 1 1 2 2 3 2 1 2
Sample Output 3
2
题意:
请编写一个程序,输入包含n个整数的数列S以及包含q个不重复整数的数列T,输出既包含于T也包含于S的整数的个数C
题目分析:
二分查找。
方法一:
利用C++ STL 中自带的二分查找函数(需要借助容器vector)
binary_search(v.begin(), v.end(), number_to_find);
C++代码实现如下:
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
using namespace std;
int main()
{
int n, q, x;
int ans = 0;
vector<int> a, b;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> x;
a.push_back(x);
}
cin >> q;
for (int j = 0; j < q; j++)
{
cin >> x;
b.push_back(x);
}
sort(a.begin(), a.end());
for (vector<int>::iterator it = b.begin(); it != b.end(); it++)
{
if (binary_search(a.begin(), a.end(), *it))
ans++;
}
cout << ans << endl;
return 0;
}
方法二:
利用C++ STL函数lower_bound()
lower_bound()的前两个参数是指针类型,用来指定作为对象的数组或容器的范围。
比如int A[14]; lower_bound(A, A + 14, 3).它指定了数组A 的头指针以及距离头指针14的位置,即数组的末尾的后一位。如果A是vector,则可使用A.begin(), A.end()来指定范围。lower_bound()的第3个参数用于指定value。
lower_bound(A, A + 14, 3)函数最终返回一个vecotr中的不小于3的最小值的地址。
即:
*lower_bound(v.begin(), v.end(), value) = {k| k is in the vector subject to k is the minimum number which is not less than value};
C++代码实现如下:
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
using namespace std;
int main()
{
int n, q, x;
int ans = 0;
vector<int> a, b;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> x;
a.push_back(x);
}
cin >> q;
for (int j = 0; j < q; j++)
{
cin >> x;
b.push_back(x);
}
sort(a.begin(), a.end());
for (vector<int>::iterator it = b.begin(); it != b.end(); it++)
{
if (*lower_bound(a.begin(), a.end(), *it) == *it)
ans++;
}
cout << ans << endl;
return 0;
}
方法三:
自编二分查找函数
遍历数列T的每个元素,对于每个元素,利用find二分查找这个元素是否在数列S中。
如果在,则计数器ans++
对于二分查找函数
bool find(int *a, int n, int m, int left, int right, int sum) ,
说明如下:
a代表数组,n是元素个数,m是要查询的数,left是二分最左端,right是二分最右端,sum记录递归的次数
C++代码实现如下:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
using namespace std;
int a[100001];
int b[50001];
bool find(int *a, int n, int m, int left, int right, int sum) // a代表数组,n是元素个数,m是要查询的数,left是二分最左端,right是二分最右端,sum记录递归的次数
{
if (pow(2, sum) > n + 10) // 如果递归次数超过二分正常的次数log2(n)
return false;
if (a[left] == m)
return true;
if (a[right] == m)
return true;
int mid = (left + right) / 2;
if (m == a[mid])
return true;
else if (m < a[mid])
{
right = mid;
find(a, n, m, left, right, sum + 1); // 递归
}
else
{
left = mid;
find(a, n, m, left, right, sum + 1); // 递归
}
}
int main()
{
int n, q;
int sum = 0;
int ans = 0;
scanf ("%d", &n);
for (int i = 0; i < n; i++)
scanf ("%d", &a[i]);
scanf ("%d", &q);
for (int i = 0; i < q; i++)
scanf ("%d", &b[i]);
sort(a, a + n);
for (int i = 0; i < q; i++)
if (find(a, n, b[i], 0, n - 1, sum)) // 二分查找
ans++;
cout << ans << endl;
return 0;
}