算法分析基础

2.1算法复杂度

算法,就是解决一个问题的一系列步骤。

2.1.1好的算法

对于一个问题,可以有很多种不同的算法。人们总希望可以设计的算法具有许多良好的特性,那么,什么样的算法才可以称为好的算法?好的算法至少有以下四个重要特性。
(1) 正确性。算法的执行结果应当是满足预先规定的功能和性能要求
(2) 简明性。算法应该思路清晰、层次分明
(3)效率。 算法应有效地利用储存空间,并具有高的时间效率。
(4)最优性。算法的执行时间应达到求解这类问题的时间下界。

正确性不难理解,笼统地讲设计一个算法的目的就是得到问题的正确答案,所以算法首先得是正确的。正确性是指在合法的输入下,算法应实现预先规定的功能的计算精度需求。
算法的正确性和程序是直接相关的,一个算法可以是正确的,但对于一个大型程序而言,它很可能不是“完全正确”的,因为这很难证实,只要有一个输入是不合法输入,程序就可能会崩溃,所以程序得有健壮性,即对不合法输入的适当处理。

简明性,一个思路清晰、层次分明的算法能让人易于理解,也能减少一些难于发现的程序错误的可能性,易于编码和调试。但是一般而言,简单的算法并不一定是高效的。

效率,比如编写一个程序,解决一个问题只需要10个元素的数组,但是程序开了10000个元素的数组,显然很多储存空间就浪费掉了。而进行一些不必要的运算则是增多了计算时间。但有时为了增加程序的可读性,牺牲一些一定的效率也是必要的。因此,在简明性和效率之间选择需要谨慎。

最优性,何为最优,显然就是找不到更好的了,一个最优的算法的执行时间应是这类问题的执行时间下界。不同的问题其执行时间下界不同,比如n个元素中寻找最大元素的算法,需要执行n-1次的比较,如果有人称他的算法只需要n-2次,那么可以肯定他的算法不是正确的。

影响程序运行的因素

1、最大的因素在于算法,起根本和决定性作用的
2、问题规模和输入规模
3、计算机性能

算法复杂度,算法运行所需的时间

渐进表示法

大O记号

定义:如果存在常数c>0和n0,使得当n>=n0时,有f(n)<=c*g(n),则记为f(n)=O(g(n))
O(g(n))表示所有增长阶数不超过g(n)的函数集合。

Ω记号

定义:如果存在常数c>0和n0,使得当n>=n0时,有f(n)>=c*g(n),则记为f(n)=O(g(n))
Ω(g(n))表示所有增长阶数不低于g(n)的函数集合。

Θ记号

定义:如果存在常数c1,c2>0和n0,使得当n>=n0时,有c1g(n)<=f(n)<=c2g(n),则记为f(n)=Θ(g(n))
Θ(g(n))表示所有增长阶数等于g(n)的函数集合。

小o记号

定义:f(n)=o(g(n))当且仅当f(n)=O(g(n))且f(n)≠Ω(g(n))
O(g(n))表示所有增长阶数小于g(n)的函数集合。

定理:对于一个m次多项式 f(n)=am *nm +…,有f(n)=O(nm)=Ω(nm)=Θ(nm)

算法按时间杂度分类

多项式:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)
指数:O(2n)<O(n!)<O(nn)

2.3递推关系式

递推方程 包括·初始条件 和 递推式。
计算递推式通常有三种方法:替换方法、迭代方法 和 主方法。

1、替换方法:首先猜测递推式的解,然后用归纳法证明。

2、迭代方法:将递推式展开成和式,然后计算和式

3、主方法: 满足条件的递推式用主定理求解

主定理
对于a>=1,b>1, 满足条件的递推式:T(n)=a*T(n/b)+f(n)
情况(1):若对某常数E>0,有f(n)=O(nlogb(a)-E),则T(n)=Θ(nlogb(a))
情况(2):若f(n)=Θ(nlogb(a)),则T(n)=Θ(nlogb(a)logn)
情况(3):若对某常数E>0,有f(n)=O(n^log b(a)-E^),且对于某个常数c<1和所有足够大的n,有af(n/b)<=cf(n)T(n)=Θ(f(n))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值