题目描述
给定二叉树的根节点 root,找出存在于不同节点 A 和 B 之间的最大值 V,其中 V = |A.val - B.val|,且 A 是 B 的祖先。
(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)
输入:[8,3,10,1,6,null,14,null,null,4,7,13]
输出:7
解释:
我们有大量的节点与其祖先的差值,其中一些如下:
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。
示例:
提示:
树中的节点数在 2 到 5000 之间。
每个节点的值介于 0 到 100000 之间。
解题
比较笨的办法。。遍历每个子树,依次求每个子树的根结点与每个结点差值的最大值。
class Solution {
public:
void frontM(TreeNode *root,int &r,int &sub) //求子树中根结点与每个结点差值的最大值
{
if(!root) return;
int temp=abs(root->val-r);
if(temp>sub)sub=temp;
frontM(root->left,r,sub);
frontM(root->right,r,sub);
}
void front(TreeNode *root,int &mx) //遍历每个子树,依次求每个子树的根结点与每个结点差值的最大值
{
if(!root) return;
frontM(root,root->val,mx);
front(root->left,mx);
front(root->right,mx);
}
int maxAncestorDiff(TreeNode* root) {
int mx=0;
front(root,mx);
return mx;
}
};