今天遇到一个DFS题,题目本身不难但一直得到的不是正确结果好气,就是不知道错哪了。
题目大意是求迷宫有多少种不同的路径,我把题目简化一下
S是起点,E是终点,#是墙,. (点)可以通过
迷宫我直接初始化了
#include<stdio.h>
char maze[5][5] = {
{'S','.','.','.','.'},
{'.','#','#','#','.'},
{'.','#','#','#','.'},
{'.','#','#','#','.'},
{'.','.','.','.','E'}
} ;
bool flag[5][5];
int sx,sy;
int count = 0;
int move[4][2] = {{-1,0},{0,-1},{1,0},{0,1}};
void dfs(int x,int y)
{
if(maze[x][y] == 'E')
{
count++;
return;
}
for(int i = 0;i<4;i++)
{
int curx = x + move[i][0];
int cury = y + move[i][1];
if(curx >= 0 && curx < 5 && cury >= 0 && cury < 5 && maze[curx][cury] != '#' && flag[curx][cury] == false)
{
flag[curx][cury] = true;
dfs(curx,cury);
flag[curx][cury] = false;
}
}
}
int main()
{
scanf("%d%d",&sx,&sy);
dfs(sx,sy);
printf("%d",count);
}
这是开始的解法
运行结果是4
可明显只有2个方案数啊
咋一看没错啊,可为什么得不到正确结果呢?到底是哪出了问题呢?断点调试一下,发现递归了几下数据直接忘了。
于是直接在代码中每次得到一个方案后输出flag数组
于是乎
这是每次循环都输出flag数组
到这已经一目了然了,原来是这出了问题
for(int i = 0;i<4;i++)
{
int curx = x + move[i][0];
int cury = y + move[i][1];
if(curx >= 0 && curx < 5 && cury >= 0 && cury < 5 && maze[curx][cury] != '#' && flag[curx][cury] == false)
{
flag[curx][cury] = true;//这里出了问题
dfs(curx,cury);
flag[curx][cury] = false;
}
}
当在点S时,按着上左下右的顺序遍历S的四个方向。第一次上越界,第二次左越界,第三次下,递归进入下一层,这时又按上左下右的顺序遍历S下边那个点的四个方向,因为开始没有给flag[0][0]也就是S点初始化为true,导致这种错误
解决方法:在进入dfs时如果该点不是E再让flag[x][y] = true,循环结束后将标记取消,再让flag[x][y] = false.
这样就解决了
#include<stdio.h>
char maze[5][5] = {
{'S','.','.','.','.'},
{'.','#','#','#','.'},
{'.','#','#','#','.'},
{'.','#','#','#','.'},
{'.','.','.','.','E'}
} ;
bool flag[5][5];
int sx,sy;
int count = 0;
int move[4][2] = {{-1,0},{0,-1},{1,0},{0,1}};
void dfs(int x,int y)
{
if(maze[x][y] == 'E')
{
count++;
return;
}
flag[x][y] = true;
for(int i = 0;i<4;i++)
{
int curx = x + move[i][0];
int cury = y + move[i][1];
if(curx >= 0 && curx < 5 && cury >= 0 && cury < 5 && maze[curx][cury] != '#' && flag[curx][cury] == false)
{
dfs(curx,cury);
}
}
flag[x][y] = false;
}
int main()
{
scanf("%d%d",&sx,&sy);
dfs(sx,sy);
printf("%d",count);
printf("\n-----------------------\n");
return 0;
}