时间限制: 1000 ms 空间限制: 131072 KB 具体限制
题目描述
FJ在一条船上,海上有N(1<=N<=100)岛,编号为1..N,现在他的任务是按照一个给定访问次序A_1,A_2,….A_M去探索这M(2<=M<=10,000)个岛屿,已经知道任意两个岛屿之间的危险系数,让你找出一个探索序列,只需满足你的探索序列包含给定的A_1..A_M这个序列就可以(不一定要连续),使得总的危险系数最小。
输入
第1行: 两个数, N 和 M
第 2..M+1行: 第i+1行表示给定的序列中第i个岛屿A_i
第M+2..N+M+1行:每行N个整数,表示岛屿之间的危险系数,对角线上一定是0。
输出
输出满足要求的最小危险系数
样例输入
3 4
1
2
1
3
0 5 1
5 0 2
1 2 0
样例输出
7
数据范围限制
提示
【样例说明】
输出解释:我们可以按照1,3,2,3,1,3的顺序去探索,满足了规定了序列是该序列的字序列,危险系数为(1,3)+(3,2)+(2,3)+(3,1)+(1,3)=7。
题解:
典型的图论题,求最短路径,直接最简单的Floyd算法。
不过要注意:Floyd三重循环,先是k,再是i,最后是j。
代码:
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int MAXN=110;
int n,m,sum;
int g[MAXN][MAXN],a[10000000];
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>g[i][j];
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(g[i][k]+g[k][j]<g[i][j])
g[i][j]=g[i][k]+g[k][j];
}
for(int i=1;i<m;i++)
sum+=g[a[i]][a[i+1]];
cout<<sum;
return 0;
}