【NOIP2018模拟赛2018.10.23】数

题目

数(number)

题目描述】

给定正整数n,m,问有多少个正整数满足:

(1)不含前导0;

(2)是m的倍数;

(3)可以通过重排列各个数位得到n。

【输入数据】

一行两个整数n,m。

【输出数据】

一行一个整数表示答案对998244353取模的结果。

【样例输入】

1 1

【样例输出】

1

【数据范围】

对于20%的数据,n<10^10。

对于50%的数据,n<10^16,m<=20。

对于100%的数据,n<10^20,m<=100。


题解

–是一道简单的状压数位dp
f[i][j]:表示当前选数状态是i,模m为j的方案数
当然这道题要用变进制数来压
要好好理解一下


代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=25;
const int mod=998244353;

char n;
int a[10],b[10],m,l;
int k[10],p[10];
long long f[100005][105];

int main(){
//	freopen("number.in","r",stdin);
//	freopen("number.out","w",stdout);
	while(n=getchar()){
		if(n<'0'||n>'9')
			break;
		a[n-'0']++;
	}
	cin>>m;
	for(int i=0;i<=9;i++)
		if(a[i])
			b[++l]=i;
	if(l==1&&!b[l]){
		cout<<1;
		return 0;
	}
	k[0]=1;
	for(int i=1;i<=l;i++){
		k[i]=k[i-1]*(a[b[i]]+1);
		p[i]=k[i-1];
	}
	f[0][0]=1;
	for(int i=1;i<k[l];i++){
		int now=i;
		for(int j=l;j>=1;j--){
			if(now>=p[j]){
				if(!b[j]&&i<=k[j])
					continue;
				for(int x=0;x<m;x++)
					f[i][(x*10+b[j])%m]=(f[i][(x*10+b[j])%m]+f[i-p[j]][x])%mod;
				now%=p[j];
			}
		}
	}
	cout<<f[k[l]-1][0];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值