修仙录 3.20

这次是想过头了。。。
这辈子是不可能AC的


jzoj 6073 河

https://jzoj.net/senior/#contest/show/2675/0
把一条河看成是一个(k,b)点
可以发现他可以直接污染的点是:所有左上方和右下方的点
而间接污染的范围是:k在该点左上方k最小的点到右下方k最大的点之间
发现每个点的污染范围其实就是k轴上的一段区间
求覆盖整段区间的方案数
noip级别的dp呀,QAQ

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=5e5+5;
const int mod=1e9+7;

int n;
struct node{
	int k,b,id;
}r[MAXN];
struct nmd{
	int l,r;
}p[MAXN];
long long f[MAXN];

bool comp_1(node x,node y){
	if(x.k==y.k) return x.b>y.b;
	return x.k>y.k;
}
bool comp_2(node x,node y){
	return x.b<y.b;
}
bool comp_3(nmd x,nmd y){
	if(x.r==y.r) return x.l<y.l;
	return x.r<y.r;
}

void add(int x,long long v){
	for(x;x<=n+1;x+=x&-x) f[x]=(f[x]+v)%mod;
}

long long ask(int x){
	long long sum=0;
	for(x;x;x-=x&-x) sum=(sum+f[x])%mod;
	return sum;
}

int main(){
	freopen("river.in","r",stdin);
	freopen("river.out","w",stdout);
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d%d",&r[i].b,&r[i].k);
	sort(r+1,r+1+n,comp_1);
	for(int i=1;i<=n;i++) r[i].id=i;
	sort(r+1,r+1+n,comp_2);
	for(int i=1,mx=-mod,id=0;i<=n;i++){
		mx=max(mx,r[i].k);
		if(mx==r[i].k) id=r[i].id;
		p[i].l=id;
	}
	for(int i=n,mn=mod,id=0;i>=1;i--){
		mn=min(mn,r[i].k);
		if(mn==r[i].k) id=r[i].id;
		p[i].r=id;
	}
	sort(p+1,p+1+n,comp_3);
	add(1,1);
	for(int i=1;i<=n;i++) add(p[i].r+1,(ask(p[i].r+1)-ask(p[i].l-1)+mod)%mod);
	cout<<(ask(n+1)-ask(n)+mod)%mod;
	return 0;
}

jzoj 6075 桥

https://jzoj.net/senior/#contest/show/2675/2
dp还是很好想的。
f[i][j]:第i座桥建在j处的最小权值,j离散化一下就可以转移了
正解有点多
在这里插入图片描述
其实就是f在坐标系中是盆型的,用b画一条横线,对x的三个范围最优值就可以算。

我用的是线段树维护。
听说set可以只用50行。(dalao才会打)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define LL long long
using namespace std;
const int MAXN=1e5+10;

int n,m,p[MAXN],s[MAXN],q[MAXN],t[MAXN],cnt; 
LL ans;
vector<int>go[MAXN],pla;
int cf[MAXN];

struct line_tree{
	struct node{
		int lc,rc;
		LL mn,laz_a,laz_c,sum,len;
		bool is;
	}tr[MAXN*4];
	void build(int p,int l,int r){
		tr[p].len= r==n?1e9:pla[r]-pla[l-1];
		if(l==r) return ;
		int mid=l+r>>1;
		tr[p].lc=++cnt,tr[p].rc=++cnt;
		build(tr[p].lc,l,mid);
		build(tr[p].rc,mid+1,r); 
	}
	void cover(int p,LL v){
		tr[p].mn=tr[p].laz_c=v;
		tr[p].laz_a=0,tr[p].is=1;
		tr[p].sum=v*tr[p].len;
	}
	void Plus(int p,LL v){
		tr[p].mn+=v;
		tr[p].laz_a+=v;
		tr[p].sum+=v*tr[p].len;
	}
	void down(int p){
		if(tr[p].is){
			cover(tr[p].lc,tr[p].laz_c);
			cover(tr[p].rc,tr[p].laz_c);
			tr[p].is=0;
		}
		if(tr[p].laz_a){
			Plus(tr[p].lc,tr[p].laz_a);
			Plus(tr[p].rc,tr[p].laz_a);
			tr[p].laz_a=0;
		}
	}
	void up(int p){
		tr[p].mn=min(tr[tr[p].lc].mn,tr[tr[p].rc].mn);
		tr[p].sum=tr[tr[p].lc].sum+tr[tr[p].rc].sum;
	}
	int find(int p,int l,int r,int v){
		if(tr[p].mn>v) return 0;
		if(l==r) return l;
		down(p);
		int mid=l+r>>1;
		if(tr[tr[p].rc].mn<=v) return find(tr[p].rc,mid+1,r,v);
		else return find(tr[p].lc,l,mid,v); 
	}
	LL ask(int p,int l,int r,int L,int R){
		if(L>R) return 0;
		if(L<=l&&r<=R) return tr[p].sum;
		down(p);
		int mid=l+r>>1;LL ans=0;
		if(L<=mid) ans+=ask(tr[p].lc,l,mid,L,R);
		if(mid<R) ans+=ask(tr[p].rc,mid+1,r,L,R);
		return ans;
	}
	void turn(int p,int l,int r,int L,int R,LL v){
		if(L>R) return ;
		if(L<=l&&r<=R) {cover(p,v);return ;}
		down(p);
		int mid=l+r>>1;
		if(L<=mid) turn(tr[p].lc,l,mid,L,R,v);
		if(mid<R) turn(tr[p].rc,mid+1,r,L,R,v);
		up(p);
	}
	void add(int p,int l,int r,int L,int R,LL v){
		if(L>R) return ;
		if(L<=l&&r<=R) {Plus(p,v);return ;}
		down(p);
		int mid=l+r>>1;
		if(L<=mid) add(tr[p].lc,l,mid,L,R,v);
		if(mid<R) add(tr[p].rc,mid+1,r,L,R,v);
		up(p);
	}
}solve;

int main(){
	freopen("bridge.in","r",stdin);
	freopen("bridge.out","w",stdout);
	cin>>n>>m;
	for(int i=1;i<=n;i++) scanf("%d%d%d%d",&p[i],&s[i],&q[i],&t[i]);
	for(int i=1;i<=n;i++){
		if(p[i]==q[i]) {ans+=abs(s[i]-t[i]);continue;}
		if(p[i]>q[i]) swap(p[i],q[i]),swap(s[i],t[i]);
		go[p[i]].push_back(s[i]),go[q[i]-1].push_back(t[i]);
		pla.push_back(s[i]),pla.push_back(t[i]);
		cf[p[i]+1]++,cf[q[i]]--;
	}
	pla.push_back(0);sort(pla.begin(),pla.end());
	pla.erase(unique(pla.begin(),pla.end()),pla.end());
	n=pla.size(),cnt=1;
	solve.build(1,1,n);
	for(int i=1;i<=m;i++){
		cf[i]+=cf[i-1];
		int x=solve.find(1,1,n,-cf[i]-1);
		ans+=solve.ask(1,1,n,1,x)-1ll*pla[x]*(-cf[i]);
		solve.turn(1,1,n,1,x,-cf[i]);
		int y=solve.find(1,1,n,cf[i])+1;
		solve.turn(1,1,n,y,n,cf[i]);
		sort(go[i].begin(),go[i].end());
		int last=1;
		for(int j=0;j<go[i].size();j++){
			ans+=go[i][j];
			int now=lower_bound(pla.begin(),pla.end(),go[i][j])-pla.begin()+1;
			solve.add(1,1,n,last,now-1,2*j-go[i].size());
			last=now;
		}
		solve.add(1,1,n,last,n,go[i].size());
	}
	cout<<ans+solve.ask(1,1,n,1,solve.find(1,1,n,-1));
	return 0;
}

第二题线段树合并。(做不到再见)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值