这次是想过头了。。。
这辈子是不可能AC的
jzoj 6073 河
https://jzoj.net/senior/#contest/show/2675/0
把一条河看成是一个(k,b)点
可以发现他可以直接污染的点是:所有左上方和右下方的点
而间接污染的范围是:k在该点左上方k最小的点到右下方k最大的点之间
发现每个点的污染范围其实就是k轴上的一段区间
求覆盖整段区间的方案数
noip级别的dp呀,QAQ
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=5e5+5;
const int mod=1e9+7;
int n;
struct node{
int k,b,id;
}r[MAXN];
struct nmd{
int l,r;
}p[MAXN];
long long f[MAXN];
bool comp_1(node x,node y){
if(x.k==y.k) return x.b>y.b;
return x.k>y.k;
}
bool comp_2(node x,node y){
return x.b<y.b;
}
bool comp_3(nmd x,nmd y){
if(x.r==y.r) return x.l<y.l;
return x.r<y.r;
}
void add(int x,long long v){
for(x;x<=n+1;x+=x&-x) f[x]=(f[x]+v)%mod;
}
long long ask(int x){
long long sum=0;
for(x;x;x-=x&-x) sum=(sum+f[x])%mod;
return sum;
}
int main(){
freopen("river.in","r",stdin);
freopen("river.out","w",stdout);
cin>>n;
for(int i=1;i<=n;i++) scanf("%d%d",&r[i].b,&r[i].k);
sort(r+1,r+1+n,comp_1);
for(int i=1;i<=n;i++) r[i].id=i;
sort(r+1,r+1+n,comp_2);
for(int i=1,mx=-mod,id=0;i<=n;i++){
mx=max(mx,r[i].k);
if(mx==r[i].k) id=r[i].id;
p[i].l=id;
}
for(int i=n,mn=mod,id=0;i>=1;i--){
mn=min(mn,r[i].k);
if(mn==r[i].k) id=r[i].id;
p[i].r=id;
}
sort(p+1,p+1+n,comp_3);
add(1,1);
for(int i=1;i<=n;i++) add(p[i].r+1,(ask(p[i].r+1)-ask(p[i].l-1)+mod)%mod);
cout<<(ask(n+1)-ask(n)+mod)%mod;
return 0;
}
jzoj 6075 桥
https://jzoj.net/senior/#contest/show/2675/2
dp还是很好想的。
f[i][j]:第i座桥建在j处的最小权值,j离散化一下就可以转移了
正解有点多
其实就是f在坐标系中是盆型的,用b画一条横线,对x的三个范围最优值就可以算。
我用的是线段树维护。
听说set可以只用50行。(dalao才会打)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define LL long long
using namespace std;
const int MAXN=1e5+10;
int n,m,p[MAXN],s[MAXN],q[MAXN],t[MAXN],cnt;
LL ans;
vector<int>go[MAXN],pla;
int cf[MAXN];
struct line_tree{
struct node{
int lc,rc;
LL mn,laz_a,laz_c,sum,len;
bool is;
}tr[MAXN*4];
void build(int p,int l,int r){
tr[p].len= r==n?1e9:pla[r]-pla[l-1];
if(l==r) return ;
int mid=l+r>>1;
tr[p].lc=++cnt,tr[p].rc=++cnt;
build(tr[p].lc,l,mid);
build(tr[p].rc,mid+1,r);
}
void cover(int p,LL v){
tr[p].mn=tr[p].laz_c=v;
tr[p].laz_a=0,tr[p].is=1;
tr[p].sum=v*tr[p].len;
}
void Plus(int p,LL v){
tr[p].mn+=v;
tr[p].laz_a+=v;
tr[p].sum+=v*tr[p].len;
}
void down(int p){
if(tr[p].is){
cover(tr[p].lc,tr[p].laz_c);
cover(tr[p].rc,tr[p].laz_c);
tr[p].is=0;
}
if(tr[p].laz_a){
Plus(tr[p].lc,tr[p].laz_a);
Plus(tr[p].rc,tr[p].laz_a);
tr[p].laz_a=0;
}
}
void up(int p){
tr[p].mn=min(tr[tr[p].lc].mn,tr[tr[p].rc].mn);
tr[p].sum=tr[tr[p].lc].sum+tr[tr[p].rc].sum;
}
int find(int p,int l,int r,int v){
if(tr[p].mn>v) return 0;
if(l==r) return l;
down(p);
int mid=l+r>>1;
if(tr[tr[p].rc].mn<=v) return find(tr[p].rc,mid+1,r,v);
else return find(tr[p].lc,l,mid,v);
}
LL ask(int p,int l,int r,int L,int R){
if(L>R) return 0;
if(L<=l&&r<=R) return tr[p].sum;
down(p);
int mid=l+r>>1;LL ans=0;
if(L<=mid) ans+=ask(tr[p].lc,l,mid,L,R);
if(mid<R) ans+=ask(tr[p].rc,mid+1,r,L,R);
return ans;
}
void turn(int p,int l,int r,int L,int R,LL v){
if(L>R) return ;
if(L<=l&&r<=R) {cover(p,v);return ;}
down(p);
int mid=l+r>>1;
if(L<=mid) turn(tr[p].lc,l,mid,L,R,v);
if(mid<R) turn(tr[p].rc,mid+1,r,L,R,v);
up(p);
}
void add(int p,int l,int r,int L,int R,LL v){
if(L>R) return ;
if(L<=l&&r<=R) {Plus(p,v);return ;}
down(p);
int mid=l+r>>1;
if(L<=mid) add(tr[p].lc,l,mid,L,R,v);
if(mid<R) add(tr[p].rc,mid+1,r,L,R,v);
up(p);
}
}solve;
int main(){
freopen("bridge.in","r",stdin);
freopen("bridge.out","w",stdout);
cin>>n>>m;
for(int i=1;i<=n;i++) scanf("%d%d%d%d",&p[i],&s[i],&q[i],&t[i]);
for(int i=1;i<=n;i++){
if(p[i]==q[i]) {ans+=abs(s[i]-t[i]);continue;}
if(p[i]>q[i]) swap(p[i],q[i]),swap(s[i],t[i]);
go[p[i]].push_back(s[i]),go[q[i]-1].push_back(t[i]);
pla.push_back(s[i]),pla.push_back(t[i]);
cf[p[i]+1]++,cf[q[i]]--;
}
pla.push_back(0);sort(pla.begin(),pla.end());
pla.erase(unique(pla.begin(),pla.end()),pla.end());
n=pla.size(),cnt=1;
solve.build(1,1,n);
for(int i=1;i<=m;i++){
cf[i]+=cf[i-1];
int x=solve.find(1,1,n,-cf[i]-1);
ans+=solve.ask(1,1,n,1,x)-1ll*pla[x]*(-cf[i]);
solve.turn(1,1,n,1,x,-cf[i]);
int y=solve.find(1,1,n,cf[i])+1;
solve.turn(1,1,n,y,n,cf[i]);
sort(go[i].begin(),go[i].end());
int last=1;
for(int j=0;j<go[i].size();j++){
ans+=go[i][j];
int now=lower_bound(pla.begin(),pla.end(),go[i][j])-pla.begin()+1;
solve.add(1,1,n,last,now-1,2*j-go[i].size());
last=now;
}
solve.add(1,1,n,last,n,go[i].size());
}
cout<<ans+solve.ask(1,1,n,1,solve.find(1,1,n,-1));
return 0;
}
第二题线段树合并。(做不到再见)