博弈模板总结

文章目录

NIM 博弈

必败点==0,必胜点>0
必败点只能走到必胜点,必胜点可能走到必败点。
sg值为可以到达目标点的点 中未出现的最小非负数。

#include<bits.stdc++.h>
using namespace std;
int f[10010];记录sg值 
int mov[110];记录移动的方法 
int k;移动方法的数量为k 
int sg( int x){//记忆化dfs求解x的sg值 
	if(f[x]!=-1) return f[x];
	int vis[110]={0};
	for( int i=1;i<=k;i++){
		if(x-mov[i]>=0) {
			if(f[x-mov[i]]==-1){
				f[x-mov[i]]=sg(x-mov[i]);
			}
			vis[f[x-mov[i]]]=1;
		}
	}
	for( int i=0;;i++){//返回未访问过的最小值 
		if(vis[i]==0){
			return i;
		}
	}
}
int main(){
	memset(f,-1,sizeof(f));
	f[0]=0;//0是必败点 
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值