题目链接
这题一开始的时候想到了方向,但是实在不会依赖背包,于是就没有写出来。
依赖背包是什么呢?过了这道题之后我的理解就是,我们的下一个状态的存在性,首先是依赖于前一个状态的存在,也就是说,如果前一个状态不存在的话,我们是达到不了下一个状态的,于是,这就方便我们解决这个问题了。
我们定义无法存在的状态是“-INF”,然后呢,怎样确定它是没法存在的呢,我们如果3依赖与2,2依赖与1,那么1就是不需要依赖任何了,2必须在1成立的条件下才有可能性,所以说,2的初始条件是1的价值是必须取得的,我们依此往后推,并且没推完一个子树的时候回来还需要更新答案,因为没准是多个方向上同时选择的这样的一个过程。
一组测试样例:
6 7 5
1 1 2 4 3 1
3 2 1 2 1 1
2 1
3 2
4 3
5 2
6 5
ans:7
My Code:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 5e3 + 7;
int N, S, M, head[maxN], cnt, cost[maxN];
ll val[maxN] = {0};
struct Eddge
{
int nex, to, u;
Eddge(int a=-1, int b=0, int c=0):nex(a), to(b), u(c) {}
}edge[maxN << 1];
inline void addEddge(int u, int v)
{
edge[cnt] = Eddge(head[u], v, u);
head[u] = cnt++;
}
int root[maxN];
bool siz[maxN];
int fid(int x) { return x == root[x] ? x : root[x] = fid(root[x]); }
int top[maxN], tp, du[maxN] = {0};
struct New_Edge
{
int nex, to;
New_Edge(int a=-1, int b=0):nex(a), to(b) {}
}E[maxN << 1];
inline void _E(int u, int v)
{
E[tp] = New_Edge(top[u], v);
top[u] = tp++;
}
struct Tarjan
{
int dfn[maxN], low[maxN], tot, Stap[maxN], Stop, Belong[maxN], Bcnt;
bool instack[maxN];
Tarjan() { memset(dfn, 0, sizeof(dfn)); tot = 0; Stop = 0; Bcnt = 0; memset(instack, false, sizeof(instack)); }
void dfs(int u)
{
dfn[u] = low[u] = ++tot;
Stap[++Stop] = u;
instack[u] = true;
for(int i=head[u], v; ~i; i=edge[i].nex)
{
v = edge[i].to;
if(!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v]) low[u] = min(low[u], dfn[v]);
}
int v, num = 0;
if(low[u] == dfn[u])
{
Bcnt++;
num = 0;
do
{
v = Stap[Stop --];
Belong[v] = Bcnt;
instack[v] = false;
num++;
if(num > 1)
{
int fv = fid(v);
siz[fv] = true; //已经出现环了,这个连通分量不能使用了
}
} while(u ^ v);
}
}
void solve()
{
for(int i=1; i<=N; i++)
{
if(!dfn[i]) dfs(i);
}
for(int i=0, u, v, fu, fv; i<cnt; i++)
{
u = edge[i].u; v = edge[i].to;
fu = fid(u); fv = fid(v);
if(siz[fu]) continue;
_E(v, u);
du[u]++;
}
for(int i=1, ff; i<=N; i++)
{
ff = fid(i);
if(siz[ff] || du[i]) continue;
_E(0, i);
}
}
}TJ;
ll dp[maxN][maxN] = {0}, ans = 0;
ll lower_down[maxN] = {0};
void dfs(int u)
{
for(int i=top[u], v; ~i; i=E[i].nex)
{
v = E[i].to;
lower_down[v] = lower_down[u] + cost[v];
if(lower_down[v] > S) continue;
for(int j=0; j<lower_down[u]; j++) dp[v][j] = -INF;
for(int j=S; j>=lower_down[v]; j--) dp[v][j] = max(dp[v][j], dp[u][j - cost[v]] + val[v]);
dfs(v);
for(int j=0; j<=S; j++) dp[u][j] = max(dp[u][j], dp[v][j]);
}
}
inline void init()
{
cnt = tp = 0;
for(int i=0; i<=N; i++)
{
head[i] = top[i] = -1;
root[i] = i;
siz[i] = false;
}
for(int i=1; i<=N; i++) scanf("%lld", &val[i]);
for(int i=1; i<=N; i++) scanf("%d", &cost[i]);
}
int main ()
{
scanf("%d%d%d", &N, &S, &M);
init();
for(int i=1, u, v, fu, fv; i<=M; i++)
{
scanf("%d%d", &u, &v);
fu = fid(u); fv = fid(v);
if(fu ^ fv) root[fu] = fv;
addEddge(u, v);
}
TJ.solve();
dfs(0);
printf("%lld\n", dp[0][S]);
return 0;
}