Intervals【POJ - 3680】【费用流】

题目链接


  给出N个开区间,每个开区间都有一个权值,现在对于实轴上的所有的点,要满足每一个点被覆盖次数不超过K次,问最大可以获得的权值是多大?

  离散化+费用流

  首先,我们看到权值的区间实际上并没有1e5那么长,我们可以对其进行离散化一下,于是区间的最长也就是2N了,也就是从1e5到了4e2。

  然后,对于(u, v),我们先看(x, x + 1)只能被经过最多K次,可以看成一个从0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow X \rightarrow X + 1每条边都最多经过K次,那么不妨设源点开始有K的最大流,然后呢因为有的点可能不足K流这样的延续性,所以为了保证连续性,每条边(x, x + 1)给予流为K,费用为0的边。

  然后对于查询的(a, b)区间,我们可以看成a向b连接费用为-w的流为1的边。取负权值是为了要最大费用。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
//#include <unordered_map>
//#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define Big_INF 0x3f3f3f3f3f3f3f3f
#define eps 1e-6
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e3 + 7;
int N, K, head[maxN], cnt, Lsan[maxN], _UP, ai[maxN], bi[maxN], wi[maxN];
struct Eddge
{
    int nex, u, v, flow, cost;
    Eddge(int a=-1, int b=0, int c=0, int d=0, int f=0):nex(a), u(b), v(c), flow(d), cost(f) {}
} edge[maxN << 1];
inline void addEddge(int u, int v, int f, int c)
{
    edge[cnt] = Eddge(head[u], u, v, f, c);
    head[u] = cnt++;
}
inline void _add(int u, int v, int f, int c) { addEddge(u, v, f, c); addEddge(v, u, 0, -c); }
struct MaxFlow_MinCost
{
    int pre[maxN], S, T; ll Flow[maxN], dist[maxN];
    queue<int> Q;
    bool inque[maxN];
    inline bool spfa()
    {
        for(int i=0; i<=T; i++) { pre[i] = -1; dist[i] = INF; inque[i] = false; }
        while(!Q.empty()) Q.pop();
        Q.push(S); dist[S] = 0; inque[S] = true; Flow[S] = INF;
        while(!Q.empty())
        {
            int u = Q.front(); Q.pop(); inque[u] = false;
            ll f, w;
            for(int i=head[u], v; ~i; i=edge[i].nex)
            {
                v = edge[i].v; f = edge[i].flow; w = edge[i].cost;
                if(f && dist[v] > dist[u] + w)
                {
                    dist[v] = dist[u] + w;
                    Flow[v] = min(Flow[u], f);
                    pre[v] = i;
                    if(!inque[v])
                    {
                        inque[v] = true;
                        Q.push(v);
                    }
                }
            }
        }
        return ~pre[T];
    }
    inline ll EK()
    {
        ll sum_Cost = 0;
        while(spfa())
        {
            int now = T, las = pre[now];
            while(now ^ S)
            {
                edge[las].flow -= Flow[T];
                edge[las ^ 1].flow += Flow[T];
                now = edge[las].u;
                las = pre[now];
            }
            sum_Cost += dist[T] * Flow[T];
        }
        return sum_Cost;
    }
} MF;
inline void init()
{
    cnt = 0; MF.S = 0; MF.T = _UP + 1;
    for(int i=0; i<=MF.T; i++) head[i] = -1;
    for(int i=0; i<=_UP; i++) _add(i, i + 1, K, 0);
}
int main()
{
    int T; scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d", &N, &K);
        _UP = 0;
        for(int i=1; i<=N; i++)
        {
            scanf("%d%d%d", &ai[i], &bi[i], &wi[i]);
            Lsan[++_UP] = ai[i]; Lsan[++_UP] = bi[i];
        }
        sort(Lsan + 1, Lsan + _UP + 1);
        _UP = (int)(unique(Lsan + 1, Lsan + _UP + 1) - Lsan - 1);
        init();
        for(int i=1; i<=N; i++)
        {
            ai[i] = (int)(lower_bound(Lsan + 1, Lsan + _UP + 1, ai[i]) - Lsan);
            bi[i] = (int)(lower_bound(Lsan + 1, Lsan + _UP + 1, bi[i]) - Lsan);
            _add(ai[i], bi[i], 1, -wi[i]);
        }
        printf("%lld\n", -MF.EK());
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值