2020牛客多校H题
题意:给Q次对一个multiset的操作:
- 放进一个权值x;
- 删除存在于multiset内部的一个权值x;
- 问一个权值x能否和multiset内的权值构成一个三角形。
于是,这就是一道分类讨论的题了;我们将要取的multiset中的元素定义为a、b(),然后我们考虑x和b的相对位置来进行考虑。
这时候只需要去找x之前两个小于等于x且最接近x的数即可,然后两者之和大于x就是满足条件的了。
这时候,我们可以用一个数据结构来维护大于等于x部分的值,找到一个满足这样的条件就可以了,所以就只需要维护每一个数减去它的前驱的最小值即可,这里就可以用离散化之后的权值线段树来维护一下了。
最后附上两组测试样例。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 2e5 + 7;
int Q, N, lsan[maxN];
struct Question
{
int op, x;
Question(int a=0, int b=0):op(a), x(b) {}
inline void In() { scanf("%d%d", &op, &x); }
} ques[maxN];
multiset<int> st;
multiset<int>::iterator it;
struct tree_node
{
int lv, rv, minv, siz, preMin;
tree_node(int a=INF, int b=-INF, int c=INF, int d=0, int f=INF):lv(a), rv(b), minv(c), siz(d), preMin(f) {}
} t[maxN << 2];
void pushup(int rt)
{
t[rt] = tree_node();
if(t[lsn].siz)
{
t[rt].lv = t[lsn].lv;
t[rt].rv = t[lsn].rv;
t[rt].minv = t[lsn].minv;
t[rt].siz = t[lsn].siz;
}
if(t[rsn].siz)
{
t[rt].lv = min(t[rt].lv, t[rsn].lv);
t[rt].rv = max(t[rt].rv, t[rsn].rv);
t[rt].minv = min(t[rt].minv, t[rsn].minv);
t[rt].siz += t[rsn].siz;
}
if(t[lsn].siz && t[rsn].siz)
{
t[rsn].preMin = t[rsn].lv - t[lsn].rv;
t[rt].minv = min(t[rt].minv, t[rsn].lv - t[lsn].rv);
}
else t[rsn].preMin = INF;
}
void update(int rt, int l, int r, int qx, int val)
{
if(l == r)
{
t[rt].siz += val;
if(t[rt].siz)
{
t[rt].lv = t[rt].rv = lsan[l];
if(t[rt].siz >= 2) t[rt].minv = 0;
else t[rt].minv = INF;
}
else
{
t[rt].lv = INF; t[rt].rv = -INF;
t[rt].minv = INF;
}
return;
}
int mid = HalF;
if(qx <= mid) update(Lson, qx, val);
else update(Rson, qx, val);
pushup(rt);
}
int query(int rt, int l, int r, int ql, int qr)
{
if(!t[rt].siz) return INF;
if(ql <= l && qr >= r) return min(t[rt].minv, t[rt].preMin);
int mid = HalF;
if(qr <= mid) return query(QL);
else if(ql > mid) return query(QR);
else return min(query(QL), query(QR));
}
int main()
{
scanf("%d", &Q); N = 0;
for(int i=1; i<=Q; i++)
{
ques[i].In();
lsan[++N] = ques[i].x;
}
sort(lsan + 1, lsan + N + 1);
N = (int)(unique(lsan + 1, lsan + N + 1) - lsan - 1);
for(int i=1; i<=Q; i++) ques[i].x = (int)(lower_bound(lsan + 1, lsan + N + 1, ques[i].x) - lsan);
int a = 0, b = 0, tmp; bool ok, yes_or_no;
for(int i=1; i<=Q; i++)
{
switch (ques[i].op)
{
case 1:
{
st.insert(ques[i].x);
update(1, 1, N, ques[i].x, 1);
break;
}
case 2:
{
it = st.find(ques[i].x);
st.erase(it);
update(1, 1, N, ques[i].x, -1);
break;
}
default:
{
it = st.upper_bound(ques[i].x);
ok = true; yes_or_no = false;
if(it == st.begin())
{
ok = false;
}
else
{
it--;
b = *it;
if(it == st.begin()) ok = false;
else
{
it--;
a = *it;
}
}
if(ok)
{
if(lsan[a] + lsan[b] > lsan[ques[i].x])
{
yes_or_no = true;
}
}
if(!yes_or_no)
{
tmp = query(1, 1, N, ques[i].x, N);
if(tmp < lsan[ques[i].x]) yes_or_no = true;
}
printf(yes_or_no ? "Yes\n" : "No\n");
break;
}
}
}
return 0;
}
/*
3
1 4
1 9
3 6
Yes
*/
/*
4
1 9
1 8
2 8
3 5
No
*/