Paths on the Tree【ZOJ - 3863】【点分治+推理过程】

题目链接


  大致题意:有一棵N个点的树,现在取两条边,使得两条边共同都有的点的数量小于等于K,问这样的取法的种类数。
第一条边:{1, 2, 3},第二条边:{2, 3, 4}
第一条边:{2, 3, 4},第二条边:{1, 2, 3}
算两种方案数,同时一个点也被算作是一条边
但是{1, 2, 3}和{3, 2, 1}是一样的边(边没有方向性,无向)


  解这道题,让我们先去想想看高复杂度的做法,然后再来降低复杂度维度。

  首先,看一个O(N^2)的算法,我们枚举重叠部分,也就是两条边中间的重叠部分的边,假如是如下图这样的:

  我们枚举到的边的两个端点分别是X和Y(保证这条边的长度是小于等于K的),那么,我们肯定在各个点的方向上选择两个点,由X方向上的两个点和Y方向上的选择的两个点来组成一个以X-Y为重叠边的组合。

  我们看X端,为了选择的两个点是以X作为结尾的,所以肯定是在X的两个不同的子树上的,那么假如X端加上X一共由size个点,那么我们一个点选取为son的话,另一个点就肯定是选取为size - son,那么此时就是son * (size - son),所以选取各个son所产生的,以X点作为重叠边的一个端点时候贡献为\sum (son * (size - son)),这里的size是X这个方向上子树的大小(包括X点),但是这里还忽略了一个很重要的情况,我们选取的两个点都是不同子树的,但是都没有考虑,选择X时候,再选一个其他点也是可行的,这时候要加上size,那么贡献实际上应该是\sum (son * (size - son)) + size

  X端的贡献,我们看作是f(x) = \sum (son * (size - son)) + size,那么我们枚举边X-Y时候,产生的总的贡献为f(x) * f(y)

  对于f(x) = \sum (son * (size - son)) + size,我们进行化简,可以得到的是f(x) = \sum (son * (size - son)) + size = \sum son * size - \sum son^2 + size = size * (size - 1) - \sum son^2 + size = size^2 - \sum son^2

于是原式就被化简下来了。

  那现在如何将枚举边这个麻烦而又复杂的操作从O(N^2)降下来呢?(有点想到了楼教推荐的男人八题里的一个点分治的做法,有点久远了,以前的博客里有写到)就是用前缀和、或者后缀和的方式来维护这样具有乘法分配律的性质的信息。于是,复杂度可以升级为O(N * log(N))

  作为点分治,就不能少了“查询到分治重心的直接相连”的情况,也就是我们需要考虑改点距离点分治重心距离\leq K时候,与重心直接构成“枚举重叠边”的时候,我们要算其贡献,除了点分治重心的那个点是很好算的,就是通过上述的信息来计算得到,但是点分重心该如何算它的f(x)?可以考虑成除去一棵子树v时候的贡献。那么f(x) = \sum_{i != v}^{ } (son_i * (size - son_i - son_v)) + size - son_v

通过化简,可以得到f(x) = (size - son_v) * (size - son_v - 1) - \sum son^2 + son_v ^ 2 + size - son_v

于是,查询到重心的直接相连边的情况就迎刃而解了。

  但是,会发现一点,要是查询“小于等于K个点重叠”的情况,会发生怎样的事情呢?我们现在在点分治上向下查询的时候查到了距离重心距离为dis的点,我们需要去询问的是过重心的,在树上距离点分重心\leq K - dis的点,分别作为“枚举的重叠边”的X-Y的两端,再利用之前求得的公式,我们可以求解此时得到的贡献值。——以上说的都是没有错的,但是这里确实要维护一个前缀和,然而每次前缀和都要维护到当前点分树的size,所以,复杂度实际上会被退化成为O(N^2)的,但是使用后缀和,就可以完美的避开了这个雷区。因为每次更新的长度只有子树的size,这恰好就是点分治的精髓所在了。

  所以,我们需要使用后缀和的方式,查询“总数-“>K”的部分”。

总共的边数是sumE = \frac{N * (N + 1)}{2}

最多产生的贡献为sumE * sumE

会发现一点,刚好会超过long long一丢丢,可以使用unsigned long long或者是int128来代替,快一点的话,使用unsigned long long好一些。

  因为题目中给出的答案的由来是100 - 7 = 93(这里的“-7”大家可以自己推一下),所以,我用了反向思考的方式(正难则反),用了“后缀和+“查询>K””的方式来变向的求解了这个问题。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
//#include <unordered_map>
//#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 9e4 + 7;
int N, K, head[maxN], cnt;
struct Eddge
{
    int nex, to;
    Eddge(int a=-1, int b=0):nex(a), to(b) {}
} edge[maxN << 1];
inline void addEddge(int u, int v)
{
    edge[cnt] = Eddge(head[u], v);
    head[u] = cnt++;
}
inline void _add(int u, int v) { addEddge(u, v); addEddge(v, u); }
struct Const_Tree
{
    int father[maxN], size[maxN];
    void dfs(int u, int fa)
    {
        father[u] = fa; size[u] = 1;
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            if(v == fa) continue;
            dfs(v, u);
            size[u] += size[v];
        }
    }
    inline ull Real_Size(int u, int fa)
    {
        if(!fa) return size[u];
        else if(size[fa] > size[u]) return size[u];
        else return N - size[fa];
    }
} Basic_Tree;
ull ans;
struct Divide_Tree
{
    bool vis[maxN];
    int siz[maxN], son[maxN], maxx, root, all, deep[maxN], max_deep;
    void findroot(int u, int fa)
    {
        siz[u] = 1; son[u] = 0;
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            if(vis[v] || v == fa) continue;
            findroot(v, u);
            siz[u] += siz[v];
            son[u] = max(son[u], siz[v]);
        }
        son[u] = max(son[u], all - siz[u]);
        if(maxx > son[u]) { maxx = son[u]; root = u; }
    }
    int num_siz[maxN], Stap[maxN], Stop;
    ull w[maxN], sum[maxN], dpsum[maxN];
    void dfs(int u, int fa, int depth)
    {
        deep[u] = depth; max_deep = max(max_deep, depth);
        num_siz[u] = 1;
        Stap[++Stop] = u;
        w[u] = Basic_Tree.Real_Size(u, fa) * Basic_Tree.Real_Size(u, fa);
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            if(v == fa) continue;
            w[u] -= Basic_Tree.Real_Size(v, u) * Basic_Tree.Real_Size(v, u);
            if(vis[v]) continue;
            dfs(v, u, depth + 1);
            num_siz[u] += num_siz[v];
        }
    }
    void work(int u)
    {
        vis[u] = true;
        if(all <= K) return;
        int totsiz = all;
        for(int i=0; i<=all; i++) sum[i] = 0;
        ull fang = 0, cop_N = N;
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            fang += Basic_Tree.Real_Size(v, u) * Basic_Tree.Real_Size(v, u);
        }
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            if(vis[v]) continue;
            Stop = 0;
            dfs(v, u, 1);
            for(int j=0; j<=num_siz[v]; j++) dpsum[j] = 0;
            for(int j=1; j<=Stop; j++) dpsum[deep[Stap[j]]] += w[Stap[j]];
            for(int j=1; j<=num_siz[v]; j++)
            {
                if(K - j <= totsiz)
                {
                    ans += sum[max(0, K - j)] * dpsum[j];
                }
            }
            for(int j=num_siz[v] - 1; j>=0; j--) dpsum[j] += dpsum[j + 1];
            if(K < num_siz[v] + 1) ans += dpsum[K] * ((cop_N - Basic_Tree.Real_Size(v, u)) * (cop_N - Basic_Tree.Real_Size(v, u) - 1) - fang + Basic_Tree.Real_Size(v, u) * Basic_Tree.Real_Size(v, u) + cop_N - Basic_Tree.Real_Size(v, u));
            for(int j=num_siz[v]; j>=0; j--) sum[j] += dpsum[j];
        }
        for(int i=head[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            if(vis[v]) continue;
            all = siz[v] > siz[u] ? totsiz - siz[u] : siz[v];
            maxx = INF;
            findroot(v, 0);
            work(root);
        }
    }
    inline void clear()
    {
        for(int i=1; i<=N; i++) { vis[i] = false; sum[i] = 0; }
    }
} DT;
inline void init()
{
    cnt = 0; DT.clear();
    for(int i=1; i<=N; i++) head[i] = -1;
}
int main()
{
    int T; scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d", &N, &K);
        init();
        for(int i=1, u, v; i<N; i++)
        {
            scanf("%d%d", &u, &v);
            _add(u, v);
        }
        Basic_Tree.dfs(1, 0);
        ans = 0;
        DT.maxx = INF; DT.all = N; DT.max_deep = 0;
        DT.findroot(1, 0);
        DT.work(DT.root);
        ull sumE = (ull)N * (N + 1) / 2;
        printf("%llu\n", sumE * sumE - ans);
    }
    return 0;
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值