[APIO2014]序列分割【long long与long double的精度差异】

本文探讨了一道数据量大的编程题目,通过优化DP算法和精度处理,解决了长整数运算中可能出现的精度损失问题,介绍了如何使用longlong类型替代longdouble进行整数部分的精确存储,最终实现了算法的满分解决方案。
摘要由CSDN通过智能技术生成

题目链接


  这道题的数据是真的大,如果你的得分是88分,有可能就需要对精度做一个优化了!

  首先,考虑一点:

a * (b + c) + b * c = a * b + a * c + b * c

(a + b) * c + a * c = a * c + b * c + a * c

上下两式子相等。

所以,不需要考虑划分的先后顺序问题,最后的值只跟点的位置有关。

所以,dp方程就自己推了,我只是记录一下我错的那个点的问题:

考虑到值可能很大,所以很容易想到的是开一个long double来进行维护,但是可能想象不到的是,我们对于原本是整数的,可能用long long先存下来会更好一些。

  然后,在求斜率的过程中,我们将整数部分用long long 记录就可以拿满分了。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define pii pair<int, int>
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e5 + 7;
int N, K, op, fa[maxN][205] = {0};
ll a[maxN], s[maxN], dp[maxN][2] = {0};
inline long double Y(int i) { return 1. * (s[i] * s[i] - dp[i][op]); }
inline long double X(int i) { return 1. * s[i]; }
inline long double Slope(int i, int j)
{
    if(s[i] == s[j]) return Y(j) > Y(i) ? (long double)1e18 : (long double)-1e18;
    ll dy = (s[j] * s[j] - dp[j][op]) - (s[i] * s[i] - dp[i][op]), dx = (s[j] - s[i]);
    return 1. * dy / dx;
}
int que[maxN], top, tail;
int main()
{
    scanf("%d%d", &N, &K);
    for(int i=1; i<=N; i++) { scanf("%lld", &a[i]); s[i] = s[i - 1] + a[i]; }
    op = 0;
    for(int tim = 1; tim <= K; tim ++ , op ^= 1)
    {
        top = tail = 0;
        que[tail++] = tim;
        for(int i = tim + 1, j; i <= N; i ++)
        {
            long double kk = 1. * s[i];
            while(tail - top >= 2 && Slope(que[top], que[top + 1]) <= kk) top++;
            j = que[top];
            fa[i][tim] = j;
            dp[i][op ^ 1] = s[i] * s[j] - s[j] * s[j] + dp[j][op];
            while(tail - top >= 2 && Slope(que[tail - 1], i) <= Slope(que[tail - 2], que[tail - 1])) tail--;
            que[tail++] = i;
        }
    }
    printf("%lld\n", dp[N][op]);
    vector<int> ans;
    int now = N;
    while(K >= 1)
    {
        ans.push_back(fa[now][K]);
        now = fa[now][K];
        K--;
    }
    while(!ans.empty())
    {
        printf("%d", ans.back());
        ans.pop_back();
        printf(ans.empty() ? "\n" : " ");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值